Mots-clés : sharp constants
@article{AA_2022_34_4_a1,
author = {O. L. Vinogradov},
title = {On constants in abstract inverse theorems of approximation theory},
journal = {Algebra i analiz},
pages = {22--46},
year = {2022},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_4_a1/}
}
O. L. Vinogradov. On constants in abstract inverse theorems of approximation theory. Algebra i analiz, Tome 34 (2022) no. 4, pp. 22-46. http://geodesic.mathdoc.fr/item/AA_2022_34_4_a1/
[1] Makarov B. M., Podkorytov A. N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011 | MR
[2] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, GIFML, M., 1960
[3] Zhuk V. V., Approksimatsiya periodicheskikh funktsii, Izd. LGU, L., 1982
[4] Sterlin M. D., “Otsenki postoyannykh v obratnykh teoremakh konstruktivnoi teorii funktsii”, Dokl. AN SSSR, 209:6 (1973), 1296–1298 | MR | Zbl
[5] Sterlin M. D., “K obratnym ekstremalnym zadacham konstruktivnoi teorii funktsii”, Dokl. AN SSSR, 229:3 (1976), 550–553 | MR | Zbl
[6] Zhuk V. V., Lektsii po teorii approksimatsii, VVM, SPb, 2008
[7] Sterlin M. D., “Tochnye postoyannye v obratnykh teoremakh teorii priblizhenii”, Dokl. AN SSSR, 202:3 (1972), 545–547 | MR | Zbl
[8] Sterlin M. D., “Tochnye konstanty v obratnykh teoremakh konstruktivnoi teorii funktsii”, Vestn. Leningr. un-ta. Cer. mat., fiz., astronom., 1973, no. 7, 62–68 | MR | Zbl
[9] Vinogradov O. L., “O konstantakh v obratnykh teoremakh dlya pervoi proizvodnoi”, Vestn. S.-Peterb. un-ta. Ser. 1, 8:4 (2021), 559–571 | MR | Zbl
[10] Vinogradov O. L., “O konstantakh v obratnykh teoremakh dlya norm proizvodnykh”, Sib. mat. zh., 63:3 (2022), 531–544 | Zbl
[11] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, M., GIFML, 1959
[12] Bogachev V. I., Osnovy teorii mery, v. 1, NITs RKhD, M.–Izhevsk, 2006
[13] Vinogradov O. L., “Tochnye otsenki pogreshnostei formul tipa chislennogo differentsirovaniya na klassakh tselykh funktsii konechnoi stepeni”, Sib. mat. zh., 48:3 (2007), 538–555 | MR | Zbl
[14] Wilmes G., “On Riesz-type inequalities and $K$-functionals related to Riesz potentials in $\Bbb R^N$”, Numer. Funct. Anal. Optim., 1:1 (1979), 57–77 | DOI | MR | Zbl
[15] Stepanets A. I., Methods of approximation theory, VSP, Leiden, 2005 | MR | Zbl
[16] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[17] Lizorkin P. I., “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. mat., 29:1 (1965), 109–126 | Zbl
[18] Kozko A. I., “The exact constants in the Bernstein–Zygmund–Szegö inequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR | Zbl
[19] Taberski R., “Differences, moduli and derivatives of fractional orders”, Comment. Math. Prace Mat., 19:2 (1977), 389–400 | MR | Zbl
[20] Arestov V. V., Glazyrina P. Yu., “Neravenstvo Bernshteina–Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 20, no. 1, 2014, 17–31
[21] Ganzburg M. I., Tikhonov S. Yu., “On sharp constants in Bernstein–Nikolskii inequalities”, Constr. Approx., 45:3 (2017), 449–466 | DOI | MR | Zbl
[22] Gorbachev D. V., Martyanov I. A., “Vzaimosvyaz mezhdu konstantami Nikolskogo–Bernshteina dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 20:3 (2019), 143–153 | MR | Zbl
[23] Babenko V. F., Korneichuk N. P., Kofanov V. A., Pichugov S. A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003
[24] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl
[25] Gorbachev D. V., “Konstanty Nikolskogo–Bernshteina dlya neotritsatelnykh tselykh funktsii eksponentsialnogo tipa na osi”, Tr. IMM UrO RAN, 24, no. 4, 2018, 92–103
[26] Gorbachev D. V., Ivanov V. I., “Konstanty Nikolskogo–Bernshteina dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa v vesovykh prostranstvakh”, Tr. IMM UrO RAN, 25, no. 2, 2019, 75–87
[27] Platonov S. S., “Garmonicheskii analiz Fure–Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. mat., 71:5 (2007), 149–196 | MR | Zbl
[28] Vinogradov O. L., “Otsenki funktsionalov cherez obobschennye moduli nepreryvnosti, porozhdennye operatorami Danklya”, Probl. mat. anal., 64 (2012), 31–49 | Zbl
[29] Vinogradov O. L., “Otsenki funktsionalov cherez otkloneniya srednikh tipa Steklova, porozhdennykh operatorami tipa Danklya”, Probl. mat. anal., 65 (2012), 55–76 | MR | Zbl
[30] Timan M. F., “Nekotorye lineinye protsessy summirovaniya ryadov Fure i nailuchshee priblizhenie”, Dokl. AN SSSR, 145:4 (1962), 741–743 | MR
[31] Timan M. F., “Nailuchshee priblizhenie funktsii i lineinye metody summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. mat., 29:3 (1965), 587–604 | Zbl
[32] Timan M. F., “O priblizhenii nepreryvnykh periodicheskikh funktsii lineinymi operatorami, postroennymi na baze ikh ryadov Fure”, Dokl. AN SSSR, 181:6 (1968), 1339–1342 | Zbl
[33] Stechkin S. B., “O priblizhenii periodicheskikh funktsii summami Feiera”, Tr. Mat. in-ta AN SSSR, 62, 1961, 48–60 | Zbl
[34] Natanson G. I., “Ob otsenke konstant Lebega summ Valle–Pussena”, Geometricheskie voprosy teorii funktsii i mnozhestv, Izd. Kalin. gos. un-ta, Kalinin, 1986, 102–107
[35] Babushkin M. V., Zhuk V. V., “O dvustoronnikh otsenkakh nekotorykh funktsionalov posredstvom nailuchshikh priblizhenii”, Zap. nauch. semin. POMI, 449, 2016, 15–31