On constants in abstract inverse theorems of approximation theory
Algebra i analiz, Tome 34 (2022) no. 4, pp. 22-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In classical inverse theorems of the constructive theory of functions, structure characteristics of a function are described in terms of the rate of its approximation. Mostly, proofs of the invers theorem are based on Bernstein's idea of expanding a function in a series involving the polynomials of best approximation for this finction. In the present paper, Bernstein's approach is modified by replasing sums with integrals. It turns out that the inequalities are then deduced form identities of Frullani integrals type. The arguments are of fairly general nature, which makes it possible to obtain analogs of inverse theorems for functionals on abstract Banach (and even quasi-normed) spaces. Abstract results are used to deduce inverse theorems in specific function spaces, including weighted spaces, with specific constants.
Keywords: inverse theorems, vector integration.
Mots-clés : sharp constants
@article{AA_2022_34_4_a1,
     author = {O. L. Vinogradov},
     title = {On constants in abstract inverse theorems of approximation theory},
     journal = {Algebra i analiz},
     pages = {22--46},
     year = {2022},
     volume = {34},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_4_a1/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - On constants in abstract inverse theorems of approximation theory
JO  - Algebra i analiz
PY  - 2022
SP  - 22
EP  - 46
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_4_a1/
LA  - ru
ID  - AA_2022_34_4_a1
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T On constants in abstract inverse theorems of approximation theory
%J Algebra i analiz
%D 2022
%P 22-46
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/AA_2022_34_4_a1/
%G ru
%F AA_2022_34_4_a1
O. L. Vinogradov. On constants in abstract inverse theorems of approximation theory. Algebra i analiz, Tome 34 (2022) no. 4, pp. 22-46. http://geodesic.mathdoc.fr/item/AA_2022_34_4_a1/

[1] Makarov B. M., Podkorytov A. N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011 | MR

[2] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, GIFML, M., 1960

[3] Zhuk V. V., Approksimatsiya periodicheskikh funktsii, Izd. LGU, L., 1982

[4] Sterlin M. D., “Otsenki postoyannykh v obratnykh teoremakh konstruktivnoi teorii funktsii”, Dokl. AN SSSR, 209:6 (1973), 1296–1298 | MR | Zbl

[5] Sterlin M. D., “K obratnym ekstremalnym zadacham konstruktivnoi teorii funktsii”, Dokl. AN SSSR, 229:3 (1976), 550–553 | MR | Zbl

[6] Zhuk V. V., Lektsii po teorii approksimatsii, VVM, SPb, 2008

[7] Sterlin M. D., “Tochnye postoyannye v obratnykh teoremakh teorii priblizhenii”, Dokl. AN SSSR, 202:3 (1972), 545–547 | MR | Zbl

[8] Sterlin M. D., “Tochnye konstanty v obratnykh teoremakh konstruktivnoi teorii funktsii”, Vestn. Leningr. un-ta. Cer. mat., fiz., astronom., 1973, no. 7, 62–68 | MR | Zbl

[9] Vinogradov O. L., “O konstantakh v obratnykh teoremakh dlya pervoi proizvodnoi”, Vestn. S.-Peterb. un-ta. Ser. 1, 8:4 (2021), 559–571 | MR | Zbl

[10] Vinogradov O. L., “O konstantakh v obratnykh teoremakh dlya norm proizvodnykh”, Sib. mat. zh., 63:3 (2022), 531–544 | Zbl

[11] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, M., GIFML, 1959

[12] Bogachev V. I., Osnovy teorii mery, v. 1, NITs RKhD, M.–Izhevsk, 2006

[13] Vinogradov O. L., “Tochnye otsenki pogreshnostei formul tipa chislennogo differentsirovaniya na klassakh tselykh funktsii konechnoi stepeni”, Sib. mat. zh., 48:3 (2007), 538–555 | MR | Zbl

[14] Wilmes G., “On Riesz-type inequalities and $K$-functionals related to Riesz potentials in $\Bbb R^N$”, Numer. Funct. Anal. Optim., 1:1 (1979), 57–77 | DOI | MR | Zbl

[15] Stepanets A. I., Methods of approximation theory, VSP, Leiden, 2005 | MR | Zbl

[16] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[17] Lizorkin P. I., “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. mat., 29:1 (1965), 109–126 | Zbl

[18] Kozko A. I., “The exact constants in the Bernstein–Zygmund–Szegö inequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR | Zbl

[19] Taberski R., “Differences, moduli and derivatives of fractional orders”, Comment. Math. Prace Mat., 19:2 (1977), 389–400 | MR | Zbl

[20] Arestov V. V., Glazyrina P. Yu., “Neravenstvo Bernshteina–Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 20, no. 1, 2014, 17–31

[21] Ganzburg M. I., Tikhonov S. Yu., “On sharp constants in Bernstein–Nikolskii inequalities”, Constr. Approx., 45:3 (2017), 449–466 | DOI | MR | Zbl

[22] Gorbachev D. V., Martyanov I. A., “Vzaimosvyaz mezhdu konstantami Nikolskogo–Bernshteina dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 20:3 (2019), 143–153 | MR | Zbl

[23] Babenko V. F., Korneichuk N. P., Kofanov V. A., Pichugov S. A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003

[24] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl

[25] Gorbachev D. V., “Konstanty Nikolskogo–Bernshteina dlya neotritsatelnykh tselykh funktsii eksponentsialnogo tipa na osi”, Tr. IMM UrO RAN, 24, no. 4, 2018, 92–103

[26] Gorbachev D. V., Ivanov V. I., “Konstanty Nikolskogo–Bernshteina dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa v vesovykh prostranstvakh”, Tr. IMM UrO RAN, 25, no. 2, 2019, 75–87

[27] Platonov S. S., “Garmonicheskii analiz Fure–Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. mat., 71:5 (2007), 149–196 | MR | Zbl

[28] Vinogradov O. L., “Otsenki funktsionalov cherez obobschennye moduli nepreryvnosti, porozhdennye operatorami Danklya”, Probl. mat. anal., 64 (2012), 31–49 | Zbl

[29] Vinogradov O. L., “Otsenki funktsionalov cherez otkloneniya srednikh tipa Steklova, porozhdennykh operatorami tipa Danklya”, Probl. mat. anal., 65 (2012), 55–76 | MR | Zbl

[30] Timan M. F., “Nekotorye lineinye protsessy summirovaniya ryadov Fure i nailuchshee priblizhenie”, Dokl. AN SSSR, 145:4 (1962), 741–743 | MR

[31] Timan M. F., “Nailuchshee priblizhenie funktsii i lineinye metody summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. mat., 29:3 (1965), 587–604 | Zbl

[32] Timan M. F., “O priblizhenii nepreryvnykh periodicheskikh funktsii lineinymi operatorami, postroennymi na baze ikh ryadov Fure”, Dokl. AN SSSR, 181:6 (1968), 1339–1342 | Zbl

[33] Stechkin S. B., “O priblizhenii periodicheskikh funktsii summami Feiera”, Tr. Mat. in-ta AN SSSR, 62, 1961, 48–60 | Zbl

[34] Natanson G. I., “Ob otsenke konstant Lebega summ Valle–Pussena”, Geometricheskie voprosy teorii funktsii i mnozhestv, Izd. Kalin. gos. un-ta, Kalinin, 1986, 102–107

[35] Babushkin M. V., Zhuk V. V., “O dvustoronnikh otsenkakh nekotorykh funktsionalov posredstvom nailuchshikh priblizhenii”, Zap. nauch. semin. POMI, 449, 2016, 15–31