Hölder classes in the $L^p$ norm on a chord-arc curve in $\mathbb R^3$
Algebra i analiz, Tome 34 (2022) no. 4, pp. 1-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On a chord-arc curve $L$ in $\mathbb R^3$, the function class $L_p^{\alpha}\left(L\right)$ is introduced. This class consists of functions that satisfy an $\alpha$-Hölder type condition in the $L^p\left(L\right)$-norm with respect to the arc length on $L$. Our purpose is to describe the functions in $L_p^{\alpha}\left(L\right)$ in terms of the rate of approximation by harmonic functions defined in shrinking neighborhoods of the curve. A statement about possible rate of approximation is proved for a certain subclass of $L_p^{\alpha}\left(L\right)$, a statement ensuring the smootheness of a function approximable with the rate in question is proved for the entire class $L_p^{\alpha}\left(L\right)$.
Keywords: konstructive description, сhord-arc curves.
Mots-clés : Hölder classes harmonic functions
@article{AA_2022_34_4_a0,
     author = {T. A. Alekseeva and N. A. Shirokov},
     title = {H\"older classes in the $L^p$ norm on a chord-arc curve in $\mathbb R^3$},
     journal = {Algebra i analiz},
     pages = {1--21},
     year = {2022},
     volume = {34},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_4_a0/}
}
TY  - JOUR
AU  - T. A. Alekseeva
AU  - N. A. Shirokov
TI  - Hölder classes in the $L^p$ norm on a chord-arc curve in $\mathbb R^3$
JO  - Algebra i analiz
PY  - 2022
SP  - 1
EP  - 21
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_4_a0/
LA  - ru
ID  - AA_2022_34_4_a0
ER  - 
%0 Journal Article
%A T. A. Alekseeva
%A N. A. Shirokov
%T Hölder classes in the $L^p$ norm on a chord-arc curve in $\mathbb R^3$
%J Algebra i analiz
%D 2022
%P 1-21
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/AA_2022_34_4_a0/
%G ru
%F AA_2022_34_4_a0
T. A. Alekseeva; N. A. Shirokov. Hölder classes in the $L^p$ norm on a chord-arc curve in $\mathbb R^3$. Algebra i analiz, Tome 34 (2022) no. 4, pp. 1-21. http://geodesic.mathdoc.fr/item/AA_2022_34_4_a0/

[1] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960

[2] Motornyi V. P., “Priblizhenie funktsii algebraicheskimi polinomami v metrike $L^p$”, Izv. AN SSSR. Ser. mat., 35:4 (1971), 874–899 | Zbl

[3] Potapov M. K., “O strukturnykh kharakteristikakh klassov funktsii s dannym poryadkom nailuchshego priblizheniya”, Tr. Mat. in-ta AN SSSR, 134, 1977, 260–277

[4] Nevai P., Xu Y., “Mean convergence of Hermite interpolation”, J. Approx. Theory, 77:3 (1994), 282–304 | DOI | MR | Zbl

[5] Dynkin E. M., “Konstruktivnaya kharakteristika klassov S. L. Soboleva i O. V. Besova”, Tr. Mat. in-ta AN SSSR, 155, 1981, 41–76 | Zbl

[6] Andrievskii V. V., Maimeskul V. V., “Konstruktivnoe opisanie nekotorykh klassov funktsii na kvazigladkikh dugakh”, Izv. RAN. Ser. mat., 58:1 (1994), 195–208 | Zbl

[7] Alexeeva T. A., Shirokov N. A., “Constructive description of H ölder-like classes on an arc in $R^3$ by means of harmonic functions”, J. Approx. Theory, 249 (2020), 105308 | DOI | MR | Zbl

[8] Andrievskii V. V., “Approksimatsionnaya kharakteristika klassov funktsii na kontinuumakh kompleksnoi ploskosti”, Mat. sb., 126:1 (1985), 41–58 | MR | Zbl

[9] Andrievskii V. V., “O priblizhenii funktsii garmonicheskimi polinomami”, Izv. AN SSSR. Ser. mat., 51:1 (1987), 3–15 | Zbl

[10] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, 1970 | MR | Zbl