Mots-clés : Hölder classes harmonic functions
@article{AA_2022_34_4_a0,
author = {T. A. Alekseeva and N. A. Shirokov},
title = {H\"older classes in the $L^p$ norm on a chord-arc curve in $\mathbb R^3$},
journal = {Algebra i analiz},
pages = {1--21},
year = {2022},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_4_a0/}
}
T. A. Alekseeva; N. A. Shirokov. Hölder classes in the $L^p$ norm on a chord-arc curve in $\mathbb R^3$. Algebra i analiz, Tome 34 (2022) no. 4, pp. 1-21. http://geodesic.mathdoc.fr/item/AA_2022_34_4_a0/
[1] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960
[2] Motornyi V. P., “Priblizhenie funktsii algebraicheskimi polinomami v metrike $L^p$”, Izv. AN SSSR. Ser. mat., 35:4 (1971), 874–899 | Zbl
[3] Potapov M. K., “O strukturnykh kharakteristikakh klassov funktsii s dannym poryadkom nailuchshego priblizheniya”, Tr. Mat. in-ta AN SSSR, 134, 1977, 260–277
[4] Nevai P., Xu Y., “Mean convergence of Hermite interpolation”, J. Approx. Theory, 77:3 (1994), 282–304 | DOI | MR | Zbl
[5] Dynkin E. M., “Konstruktivnaya kharakteristika klassov S. L. Soboleva i O. V. Besova”, Tr. Mat. in-ta AN SSSR, 155, 1981, 41–76 | Zbl
[6] Andrievskii V. V., Maimeskul V. V., “Konstruktivnoe opisanie nekotorykh klassov funktsii na kvazigladkikh dugakh”, Izv. RAN. Ser. mat., 58:1 (1994), 195–208 | Zbl
[7] Alexeeva T. A., Shirokov N. A., “Constructive description of H ölder-like classes on an arc in $R^3$ by means of harmonic functions”, J. Approx. Theory, 249 (2020), 105308 | DOI | MR | Zbl
[8] Andrievskii V. V., “Approksimatsionnaya kharakteristika klassov funktsii na kontinuumakh kompleksnoi ploskosti”, Mat. sb., 126:1 (1985), 41–58 | MR | Zbl
[9] Andrievskii V. V., “O priblizhenii funktsii garmonicheskimi polinomami”, Izv. AN SSSR. Ser. mat., 51:1 (1987), 3–15 | Zbl
[10] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, 1970 | MR | Zbl