On the maximal ideal spaces of $\mathbf{H^\infty}$ on coverings of bordered Riemann surfaces
Algebra i analiz, Tome 34 (2022) no. 3, pp. 159-174

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the topological structure of the maximal ideal space of the algebra of bounded holomorphic functions on a covering of a bordered Riemann surface. Some applications of the obtained results to the theory of bounded operator-valued holomorphic functions on Riemann surfaces are presented.
Keywords: maximal ideal space, interpolating sequence, Blaschke product, Gleason part, analytic disk, covering dimension, cohomology, Freudenthal compactification.
@article{AA_2022_34_3_a6,
     author = {A. Brudnyi},
     title = {On the maximal ideal spaces of $\mathbf{H^\infty}$ on coverings of bordered {Riemann} surfaces},
     journal = {Algebra i analiz},
     pages = {159--174},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a6/}
}
TY  - JOUR
AU  - A. Brudnyi
TI  - On the maximal ideal spaces of $\mathbf{H^\infty}$ on coverings of bordered Riemann surfaces
JO  - Algebra i analiz
PY  - 2022
SP  - 159
EP  - 174
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a6/
LA  - en
ID  - AA_2022_34_3_a6
ER  - 
%0 Journal Article
%A A. Brudnyi
%T On the maximal ideal spaces of $\mathbf{H^\infty}$ on coverings of bordered Riemann surfaces
%J Algebra i analiz
%D 2022
%P 159-174
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a6/
%G en
%F AA_2022_34_3_a6
A. Brudnyi. On the maximal ideal spaces of $\mathbf{H^\infty}$ on coverings of bordered Riemann surfaces. Algebra i analiz, Tome 34 (2022) no. 3, pp. 159-174. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a6/

[1] Bass H., “$K$-theory and stable algebra”, Inst. Hautes Etudes Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR | DOI | MR

[2] Behrens M., “The corona conjecture for a class of infinitely connected domains”, Bull. Amer. Math. Soc., 76:2 (1970), 387–391 | DOI | MR | Zbl | DOI | MR | Zbl

[3] Brudnyi A., “Topology of the maximal ideal space of $H^\infty$”, J. Funct. Anal., 189:1 (2002), 21–52 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Brudnyi A., “Projections in the space $H^\infty$ and the corona theorem for subdomains of coverings of finite bordered Riemann surfaces”, Ark. Mat., 42 (2004), 31–59 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Brudnyi A., “Grauert- and Lax-Halmos-type theorems and extension of matrices with entries in $H^\infty$”, J. Funct. Anal., 206 (2004), 87–108 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Brudnyi A., “On the completion problem for algebra $H^\infty$”, J. Funct. Anal., 266:7 (2014), 4293–4313 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Brudnyi A., “Topology of the maximal ideal space of $H^\infty$ revisited”, Adv. Math., 299 (2016), 931–939 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Brudnyi A., “Banach-valued holomorphic functions on the maximal ideal space of $H^\infty$”, Invent. Math., 193:1 (2013), 187–227 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Brudnyi A., “Oka principle on the maximal ideal space of $H^\infty$”, Algebra i analiz, 31:5 (2019), 24–89 | MR | MR

[10] Brudnyi A., “Projective freeness of algebras of bounded holomorphic functions on infinitely connected domains”, Algebra i analiz, 33:4 (2021), 49–65 | MR | MR

[11] Brudnyi A., “Structure of the maximal ideal space of $H^\infty$ on the countable disjoint union of open disks”, Algebra i analiz, 32:6 (2020), 58–71 | MR | MR

[12] Brudnyi A., “Dense stable rank and Runge type approximation theorems for $H^\infty$ maps”, J. Aust. Math. Soc. | DOI | DOI

[13] Brudnyi A., “On stable rank of $H^\infty$ on coverings of bordered Riemann surfaces”, Rev. Mat. Iberoam. | DOI | MR | DOI | MR

[14] Brudnyi A., “On homotopy invariants of tensor products of Banach algebras”, Integral Equations Operator Theory, 92:2 (2020), 19, 14 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[15] Carleson L., “Interpolations by bounded analytic functions and the corona theorem”, Ann. Math. (2), 76 (1962), 547–559 | DOI | MR | Zbl | DOI | MR | Zbl

[16] Corach G., Suárez F. D., “Extension problems and stable rank in commutative Banach algebras”, Topology Appl., 21 (1985), 1–8 | DOI | MR | Zbl | DOI | MR | Zbl

[17] Douady A., “Un espace de Banach dont le groupe linéaire n'est pas connexe”, Indag. Math., 27 (1965), 787–789 | DOI | MR | DOI | MR

[18] Garnett J. B., Bounded analytic functions, Pure Appl. Math., 96, Acad. Press, New York, 1981 | MR | Zbl | MR | Zbl

[19] Hoffman K., “Bounded analytic functions and Gleason parts”, Ann. Math. (2), 86 (1967), 74–111 | DOI | MR | Zbl | DOI | MR | Zbl

[20] Hoffman K., “Analytic functions and logmodular Banach algebras”, Acta Math., 108 (1962), 271–317 | DOI | MR | Zbl | DOI | MR | Zbl

[21] Husemoller D., Fibre bundles, Grad. Texts in Math., 20, Springer-Verlag, New York, 1994 | DOI | MR | DOI | MR

[22] Lindenstrauss J., “On complemented subspaces of $m$”, Israel J. Math., 5 (1967), 153–156 | DOI | MR | Zbl | DOI | MR | Zbl

[23] Mityagin B. S., “Gomotopicheskaya struktura lineinoi gruppy banakhova prostranstva”, Uspekhi mat. nauk, 25:5 (1970), 63–106 | MR | Zbl | MR | Zbl

[24] Mortini R., Sasane A., Wick B. D., “The Corona theorem and stable rank for the algebra $\mathbb{C} + BH^\infty$”, Houston J. Math., 36:1 (2010), 289–302 | MR | Zbl | MR | Zbl

[25] Nikolski N. K., Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl | MR | Zbl

[26] Pełczyński A., “Projections in certain Banach spaces”, Studia Math., 19 (1960), 209–228 | DOI | MR | DOI | MR

[27] Suárez D., “Čech cohomology and covering dimension for the $H^\infty$ maximal ideal space”, J. Funct. Anal., 123:2 (1994), 233–263 | DOI | MR | DOI | MR

[28] Suárez D., “Trivial Gleason parts and the topological stable rank of $H^\infty$”, Amer. J. Math., 118:4 (1996), 879–904 | DOI | MR | DOI | MR

[29] Stout E. L., “Bounded holomorphic functions on finite Riemann surfaces”, Trans. Amer. Math. Soc., 120 (1965), 255–285 | MR | Zbl | MR | Zbl

[30] Treil S., “The stable rank of $H^\infty$ is equal to one”, J. Funct. Anal., 109 (1992), 130–154 | DOI | MR | Zbl | DOI | MR | Zbl