Chapter 7. Angles between invariant subspaces
Algebra i analiz, Tome 34 (2022) no. 3, pp. 276-295

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a chapter from the continuation of a survey by the author and N. K. Nikolski published in 1998. It contains two theorems describing when an invariant subspace has an invariant complement and when the angle between two given invariant subspaces is positive. The presentation involves the technique of the coordinate-free function model.
Keywords: function model, unitary dilation, contraction.
Mots-clés : invariant complement
@article{AA_2022_34_3_a12,
     author = {V. I. Vasyunin},
     title = {Chapter 7. {Angles} between invariant subspaces},
     journal = {Algebra i analiz},
     pages = {276--295},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a12/}
}
TY  - JOUR
AU  - V. I. Vasyunin
TI  - Chapter 7. Angles between invariant subspaces
JO  - Algebra i analiz
PY  - 2022
SP  - 276
EP  - 295
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a12/
LA  - en
ID  - AA_2022_34_3_a12
ER  - 
%0 Journal Article
%A V. I. Vasyunin
%T Chapter 7. Angles between invariant subspaces
%J Algebra i analiz
%D 2022
%P 276-295
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a12/
%G en
%F AA_2022_34_3_a12
V. I. Vasyunin. Chapter 7. Angles between invariant subspaces. Algebra i analiz, Tome 34 (2022) no. 3, pp. 276-295. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a12/

[1] Nikolski N., Vasyunin V., “Elements of spectral theory in terms of the free function model. I. Basic constructions”, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 211–302 | MR | Zbl | MR | Zbl

[2] Teodorescu R., “Sur les décomposition directes des contractions de l'espace de Hilbert”, J. Funct. Anal., 18:4 (1975), 414–428 | DOI | MR | Zbl | DOI | MR | Zbl

[3] Vasyunin V. I., “Teorema o korone i ugly mezhdu invariantnymi podprostranstvami”, Algebra i analiz, 6:1 (1994), 95–109