Mots-clés : Nevanlinna domains.
@article{AA_2022_34_3_a11,
author = {D. Vardakis and A. Volberg},
title = {Free boundary problems via {Sakai's} theorem},
journal = {Algebra i analiz},
pages = {252--275},
year = {2022},
volume = {34},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a11/}
}
D. Vardakis; A. Volberg. Free boundary problems via Sakai's theorem. Algebra i analiz, Tome 34 (2022) no. 3, pp. 252-275. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a11/
[1] Sakai M., “Regularity of a boundary having a Schwarz function”, Acta Math., 166:3-4 (1991), 263–297 | DOI | MR | Zbl
[2] Karmona D. D., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | MR
[3] Jerison D. S., Kenig C. E., “Boundary behavior of harmonic functions in non-tangentially accessible domains”, Adv. in Math., 46:1 (1982), 80–147 | DOI | MR | Zbl
[4] Rudin W., Function theory in the unit ball of $\mathbb{C}^n$, Classics in Math., Springer-Verlag, Berlin, 2008 | MR
[5] Fedorovskii K. Yu., “O nekotorykh svoistvakh i primerakh nevanlinnovskikh oblastei”, Tr. mat. in-ta RAN, 253, 2006, 204–213 | MR | Zbl
[6] Dyakonov K., Khavinson D., “Smooth functions in star-invariant subspaces”, Recent advances in operator-related function theory, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 59–66 | DOI | MR | Zbl
[7] Mazalov M. Ya., “Primer nepostoyannoi bianaliticheskoi funktsii, obraschayuscheisya v nul vsyudu na nigde ne analiticheskoi granitse”, Mat. zametki, 62:4 (1997), 629–632 | Zbl
[8] Mazalov M. Ya., “Primer nespryamlyaemogo nevanlinnovskogo kontura”, Algebra i analiz, 27:4 (2016), 625–630 | MR | Zbl
[9] Mazalov M. Ya., “O nevanlinnovskikh oblastyakh s fraktalnymi granitsami”, Algebra i analiz, 29 (2018), 90–110 | Zbl
[10] Belov Yu. S., Fedorovskii K. Yu., “Modelnye prostranstva, soderzhaschie odnolistnye funktsii”, Uspekhi mat. nauk, 73:1 (2018), 181–182 | MR | Zbl
[11] Belov Yu., Borichev A., Fedorovskii K., “Nevanlinna domains with large boundaries”, J. Funct. Anal., 277 (2019), 2617–2643 | DOI | MR | Zbl
[12] Douglas R. G., Shapiro H. S., Shields A. L., “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 37–76 | DOI | MR | Zbl
[13] Putinar M., Shapiro H. S., “The Friedrichs operator of a planar domain”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 303–330 | MR | Zbl
[14] Duren P., Theory of $H^p$ spaces, Pure Appl. Math., 38, Acad. Press, New York, 1970 | MR
[15] Cima J., Ross W., The backward shift on the Hardy space, Math. Surveys Monogr., 79, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl
[16] Hörmander L., The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Second ed., Springer-Verlag, Berlin, 1990 | MR
[17] Shirokov N. A., Analytic functions smooth up to the boundary, Lecture Notes in Math., 1312, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl
[18] Baranov A. D., Fedorovskii K. Yu., “Regulyarnost granits nevanlinnovskikh oblastei i odnolistnye funktsii v modelnykh podprostranstvakh”, Mat. sb., 202:12 (2011), 3–22 | Zbl
[19] Carleson L., “Sets of uniqueness for functions regular in the unit circle”, Acta Math., 87 (1952), 325–345 | DOI | MR | Zbl
[20] Taylor B. A., Williams D. L., “Ideals in rings of analytic functions with smooth boundary values”, Canad. J. Math., 22:6 (1970), 1266–1283 | DOI | MR | Zbl
[21] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii n-analiticheskimi polinomami na spryamlyaemykh konturakh v ${\mathbb{C}}^n$”, Mat. zametki, 59:1 (1996), 604–610 | Zbl
[22] Siegel C. L., Topics in complex function theory, v. I, Wiley Classics Library, Elliptic functions and uniformization theory, A Wiley-Intersci. Publ., John Wiley Sons, Inc., New York, 1988 | MR
[23] Volberg A., “On the dimension of harmonic measure of Cantor repellers”, Mich. Math. J., 40:2 (1993), 239–258 | DOI | MR | Zbl