Free boundary problems via Sakai's theorem
Algebra i analiz, Tome 34 (2022) no. 3, pp. 252-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Schwarz function on an open domain $\Omega$ is a holomorphic function satisfying $S(\zeta)=\overline{\zeta}$ on $\Gamma$, which is part of the boundary of $\Omega$. Sakai in 1991 gave a complete characterization of the boundary of a domain admitting a Schwarz function. In fact, if $\Omega$ is simply connected and $\Gamma=\partial \Omega\cap D(\zeta,r)$, then $\Gamma$ has to be regular real analytic. This paper is an attempt to describe $\Gamma$ when the boundary condition is slightly relaxed. In particular, three different scenarios over a simply connected domain $\Omega$ are treated: when $f_1(\zeta)=\overline{\zeta}f_2(\zeta)$ on $\Gamma$ with $f_1,f_2$ holomorphic and continuous up to the boundary, when $\mathcal{U}/\mathcal{V}$ equals certain real analytic function on $\Gamma$ with $\mathcal{U},\mathcal{V}$ positive and harmonic on $\Omega$ and vanishing on $\Gamma$, and when $S(\zeta)=\Phi(\zeta,\overline{\zeta})$ on $\Gamma$ with $\Phi$ a holomorphic function of two variables. It turns out that the boundary piece $\Gamma$ can be, respectively, anything from $C^\infty$ to merely $C^1$, regular except finitely many points, or regular except for a measure zero set.
Keywords: free boundary problems, Schwarz function, real analytic curves, pseudocontinuation, positive harmonic functions, boundary Harnack principle
Mots-clés : Nevanlinna domains.
@article{AA_2022_34_3_a11,
     author = {D. Vardakis and A. Volberg},
     title = {Free boundary problems via {Sakai's} theorem},
     journal = {Algebra i analiz},
     pages = {252--275},
     year = {2022},
     volume = {34},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a11/}
}
TY  - JOUR
AU  - D. Vardakis
AU  - A. Volberg
TI  - Free boundary problems via Sakai's theorem
JO  - Algebra i analiz
PY  - 2022
SP  - 252
EP  - 275
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a11/
LA  - en
ID  - AA_2022_34_3_a11
ER  - 
%0 Journal Article
%A D. Vardakis
%A A. Volberg
%T Free boundary problems via Sakai's theorem
%J Algebra i analiz
%D 2022
%P 252-275
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a11/
%G en
%F AA_2022_34_3_a11
D. Vardakis; A. Volberg. Free boundary problems via Sakai's theorem. Algebra i analiz, Tome 34 (2022) no. 3, pp. 252-275. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a11/

[1] Sakai M., “Regularity of a boundary having a Schwarz function”, Acta Math., 166:3-4 (1991), 263–297 | DOI | MR | Zbl

[2] Karmona D. D., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | MR

[3] Jerison D. S., Kenig C. E., “Boundary behavior of harmonic functions in non-tangentially accessible domains”, Adv. in Math., 46:1 (1982), 80–147 | DOI | MR | Zbl

[4] Rudin W., Function theory in the unit ball of $\mathbb{C}^n$, Classics in Math., Springer-Verlag, Berlin, 2008 | MR

[5] Fedorovskii K. Yu., “O nekotorykh svoistvakh i primerakh nevanlinnovskikh oblastei”, Tr. mat. in-ta RAN, 253, 2006, 204–213 | MR | Zbl

[6] Dyakonov K., Khavinson D., “Smooth functions in star-invariant subspaces”, Recent advances in operator-related function theory, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 59–66 | DOI | MR | Zbl

[7] Mazalov M. Ya., “Primer nepostoyannoi bianaliticheskoi funktsii, obraschayuscheisya v nul vsyudu na nigde ne analiticheskoi granitse”, Mat. zametki, 62:4 (1997), 629–632 | Zbl

[8] Mazalov M. Ya., “Primer nespryamlyaemogo nevanlinnovskogo kontura”, Algebra i analiz, 27:4 (2016), 625–630 | MR | Zbl

[9] Mazalov M. Ya., “O nevanlinnovskikh oblastyakh s fraktalnymi granitsami”, Algebra i analiz, 29 (2018), 90–110 | Zbl

[10] Belov Yu. S., Fedorovskii K. Yu., “Modelnye prostranstva, soderzhaschie odnolistnye funktsii”, Uspekhi mat. nauk, 73:1 (2018), 181–182 | MR | Zbl

[11] Belov Yu., Borichev A., Fedorovskii K., “Nevanlinna domains with large boundaries”, J. Funct. Anal., 277 (2019), 2617–2643 | DOI | MR | Zbl

[12] Douglas R. G., Shapiro H. S., Shields A. L., “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 37–76 | DOI | MR | Zbl

[13] Putinar M., Shapiro H. S., “The Friedrichs operator of a planar domain”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 303–330 | MR | Zbl

[14] Duren P., Theory of $H^p$ spaces, Pure Appl. Math., 38, Acad. Press, New York, 1970 | MR

[15] Cima J., Ross W., The backward shift on the Hardy space, Math. Surveys Monogr., 79, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[16] Hörmander L., The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Second ed., Springer-Verlag, Berlin, 1990 | MR

[17] Shirokov N. A., Analytic functions smooth up to the boundary, Lecture Notes in Math., 1312, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl

[18] Baranov A. D., Fedorovskii K. Yu., “Regulyarnost granits nevanlinnovskikh oblastei i odnolistnye funktsii v modelnykh podprostranstvakh”, Mat. sb., 202:12 (2011), 3–22 | Zbl

[19] Carleson L., “Sets of uniqueness for functions regular in the unit circle”, Acta Math., 87 (1952), 325–345 | DOI | MR | Zbl

[20] Taylor B. A., Williams D. L., “Ideals in rings of analytic functions with smooth boundary values”, Canad. J. Math., 22:6 (1970), 1266–1283 | DOI | MR | Zbl

[21] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii n-analiticheskimi polinomami na spryamlyaemykh konturakh v ${\mathbb{C}}^n$”, Mat. zametki, 59:1 (1996), 604–610 | Zbl

[22] Siegel C. L., Topics in complex function theory, v. I, Wiley Classics Library, Elliptic functions and uniformization theory, A Wiley-Intersci. Publ., John Wiley Sons, Inc., New York, 1988 | MR

[23] Volberg A., “On the dimension of harmonic measure of Cantor repellers”, Mich. Math. J., 40:2 (1993), 239–258 | DOI | MR | Zbl