On local finite separability of finitely generated associative rings
Algebra i analiz, Tome 34 (2022) no. 2, pp. 95-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that analogs of the theorems of M. Hall and N. S. Romanovsky fail in the class of commutative rings. Necessary and sufficient conditions for local finite separability of monogenic rings is established. As a corollary, it is proved that a finitely generated torsion-free PI ring is locally finitely separable if and only if its additive group is finitely generated.
Keywords: finite pproximation, occurrence in a subring, monogenic ring, commutative ring, closedness in the profinite topology.
@article{AA_2022_34_2_a2,
     author = {S. I. Kublanovskii},
     title = {On local finite separability of finitely generated associative rings},
     journal = {Algebra i analiz},
     pages = {95--117},
     year = {2022},
     volume = {34},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a2/}
}
TY  - JOUR
AU  - S. I. Kublanovskii
TI  - On local finite separability of finitely generated associative rings
JO  - Algebra i analiz
PY  - 2022
SP  - 95
EP  - 117
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_2_a2/
LA  - ru
ID  - AA_2022_34_2_a2
ER  - 
%0 Journal Article
%A S. I. Kublanovskii
%T On local finite separability of finitely generated associative rings
%J Algebra i analiz
%D 2022
%P 95-117
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/AA_2022_34_2_a2/
%G ru
%F AA_2022_34_2_a2
S. I. Kublanovskii. On local finite separability of finitely generated associative rings. Algebra i analiz, Tome 34 (2022) no. 2, pp. 95-117. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a2/

[1] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uch. zap. Ivanovsk. gos. ped. in-ta, 18 (1958), 49–60

[2] Hall M., “Coset representations in free groups”, Trans. Amer. Math. Soc., 67 (1949), 421–432 | DOI | MR | Zbl

[3] Allenby R. B. J. T., Gregorac R. J., “On locally extended residually finite groups”, Lecture Notes in Math., 319, Springer, Berlin, 1973, 9–17 | DOI | MR

[4] Romanovskii N. S., “O finitnoi approksimiruemosti svobodnykh proizvedenii otnositelno vkhozhdeniya”, Izv. AN SSSR. Ser. mat., 33:6 (1969), 1324–1329

[5] Kublanovskii S. I., O finitnoi otdelimosti konechno porozhdennykh assotsiativnykh kolets, v pechati, 2019

[6] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972

[7] Kublanovskii S.I., “O mnogoobraziyakh assotsiativnykh algebr s lokalnymi usloviyami konechnosti”, Algebra i analiz, 9:4 (1997), 119–174 | MR | Zbl

[8] Orzech M., Ribes L., “Residual finiteness and the Hopf property in rings”, J. Algebra, 15 (1970), 81–88 | DOI | MR | Zbl

[9] Burbaki N., Algebra, v. 2, Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965

[10] Shirshov A. I., “O koltsakh s tozhdestvennymi sootnosheniyami”, Mat. sb., 43:2 (1957), 277–283 | Zbl

[11] Lindner Ch. C., Evans T., Finite embedding theorems for partial designs and algebras, Sémin. Math. Supér., 56, Press. l'Univ. Montréal, Montreal, Que., 1977 | MR | Zbl