Arrangements of a plane $M$-sextic with respect to a line
Algebra i analiz, Tome 34 (2022) no. 1, pp. 123-143

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2022_34_1_a4,
     author = {S. Yu. Orevkov},
     title = {Arrangements of a plane $M$-sextic with respect to a line},
     journal = {Algebra i analiz},
     pages = {123--143},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_1_a4/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - Arrangements of a plane $M$-sextic with respect to a line
JO  - Algebra i analiz
PY  - 2022
SP  - 123
EP  - 143
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_1_a4/
LA  - ru
ID  - AA_2022_34_1_a4
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T Arrangements of a plane $M$-sextic with respect to a line
%J Algebra i analiz
%D 2022
%P 123-143
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_1_a4/
%G ru
%F AA_2022_34_1_a4
S. Yu. Orevkov. Arrangements of a plane $M$-sextic with respect to a line. Algebra i analiz, Tome 34 (2022) no. 1, pp. 123-143. http://geodesic.mathdoc.fr/item/AA_2022_34_1_a4/

[1] Fiedler-LeTouzé S., Orevkov S., Shustin E., “Corrigendum to the paper “A flexible affine M-sextic which is algebraically unrealizable””, J. Algebraic Geom., 29 (2020), 109–121 | DOI | MR | DOI | MR

[2] Gudkov D. A., “Topologiya veschestvennykh proektivnykh algebraicheskikh mnogoobrazii”, Uspekhi mat. nauk, 29:4 (1974), 3–79 | MR | Zbl | MR | Zbl

[3] Harnack A., “Über die Vielfaltigkeit der ebenen algebraischen Kurven”, Math. Ann., 10:2 (1876), 189–199 | DOI | MR | DOI | MR

[4] Korchagin A. B., Shustin E. I., “Affinnye krivye stepeni $6$ i ustraneniya nevyrozhdennoi shestikratnoi osoboi tochki”, Izv. AN SSSR. Cer. mat., 52:6 (1988), 1181–1199

[5] Orevkov S. Yu., “Novaya affinnaya $M$-sekstika”, Funkts. anal. i ego pril., 32:2 (1998), 91–94 | MR | Zbl | MR | Zbl

[6] Orevkov S. Yu., “Link theory and oval arrangements of real algebraic curves”, Topology, 38:4 (1999), 779–810 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Orevkov S. Yu., “Classification of flexible $M$-curves of degree $8$ up to isotopy”, Geom. Funct. Anal., 12:4 (2002), 723–755 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Orevkov S. Yu., “Raspolozheniya $M$-kvintiki otnositelno koniki, maksimalno peresekayuschei ee nechetnuyu vetv”, Algebra i analiz, 19:4 (2007), 174–242

[9] Orevkov S. Yu., “Algebraically unrealizable complex orientations of plane real pseudoholomorphic curves”, Geom. Funct. Anal., 31 (2021), 930–947 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Orevkov S. Yu., Shustin E. I., “Flexible algebraically unrealizable curves: rehabilitation of Hilbert–Rohn–Gudkov approach”, J. Reine Angew. Math., 511 (2002), 145–172

[11] Orevkov S. Yu., Shustin E. I., “Pseudoholomorphic algebraically unrealizable curves”, Mosc. Math. J., 3:3 (2003), 1053–1083 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Shustin E. I., “K izotopicheskoi klassifikatsii affinnykh $M$-krivykh stepeni $6$”, Metody kachestvennoi teorii i teorii bifurkatsii, Izd-vo GGU, Gorkii, 1988, 97–105

[13] Viro O. Ya., “Ploskie veschestvennye algebraicheskie krivye: postroeniya s kontroliruemoi topologiei”, Algebra i analiz, 1:5 (1989), 1–73