Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2022_34_1_a3, author = {S. T. Krymskiǐ and N. D. Filonov}, title = {On the rate of decrease at infinity of solutions to the {Schr\"odinger} equation in a half-cylinder}, journal = {Algebra i analiz}, pages = {105--122}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2022_34_1_a3/} }
TY - JOUR AU - S. T. Krymskiǐ AU - N. D. Filonov TI - On the rate of decrease at infinity of solutions to the Schr\"odinger equation in a half-cylinder JO - Algebra i analiz PY - 2022 SP - 105 EP - 122 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2022_34_1_a3/ LA - ru ID - AA_2022_34_1_a3 ER -
S. T. Krymskiǐ; N. D. Filonov. On the rate of decrease at infinity of solutions to the Schr\"odinger equation in a half-cylinder. Algebra i analiz, Tome 34 (2022) no. 1, pp. 105-122. http://geodesic.mathdoc.fr/item/AA_2022_34_1_a3/
[1] Kassels Dzh., Ratsionalnye kvadratichnye formy, Mir, M., 1982
[2] Elton D. M., “Decay rates at infinity for solutions to periodic Schrödinger equations”, Proc. Royal Soc. Edinburgh Sect. A, 150:3 (2020), 1113–1126 | DOI | MR | Zbl | DOI | MR | Zbl
[3] Götze F., “Lattice point problems and values of quadratic forms”, Invent. Math., 157:1 (2004), 195–226 | DOI | MR | Zbl | DOI | MR | Zbl
[4] Gusarov A. L., “Liuvillevy teoremy dlya ellipticheskikh uravnenii v tsilindre”, Tr. Mosk. mat. ob-va, 42, 1981, 254–266 | MR | Zbl | MR | Zbl
[5] Landis E. M., “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka (sluchai mnogikh nezavisimykh peremennykh)”, Uspekhi mat. nauk, 18:1 (1963), 3–62 | MR | Zbl | MR | Zbl
[6] Logunov A., Malinnikova E., Nadirashvili N., Nazarov F., The Landis conjecutre on exponential decay, arXiv: 2007.07034
[7] Meshkov V. Z., “O vozmozhnoi skorosti ubyvaniya na beskonechnosti reshenii uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Mat. sb., 182:3 (1991), 364–383 | Zbl | Zbl
[8] Pall G., “The distribution of integers represented by binary quadratic forms”, Bull. Amer. Math. Soc., 49 (1943), 447–449 | DOI | MR | Zbl | DOI | MR | Zbl
[9] Skriganov M. M., Sobolev A. V., “Variation of the number of lattice points in large balls”, Acta Arith., 120:3 (2005), 245–267 | DOI | MR | Zbl | DOI | MR | Zbl