Upper estimates for the Morse numbers of the matrix elements of real linear irreducible representations for connected compact simple Lie groups
Algebra i analiz, Tome 33 (2021) no. 6, pp. 107-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_6_a5,
     author = {M. V. Meshcheryakov},
     title = {Upper estimates for the {Morse} numbers of the matrix elements of real linear irreducible representations for connected compact simple {Lie} groups},
     journal = {Algebra i analiz},
     pages = {107--120},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_6_a5/}
}
TY  - JOUR
AU  - M. V. Meshcheryakov
TI  - Upper estimates for the Morse numbers of the matrix elements of real linear irreducible representations for connected compact simple Lie groups
JO  - Algebra i analiz
PY  - 2021
SP  - 107
EP  - 120
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_6_a5/
LA  - ru
ID  - AA_2021_33_6_a5
ER  - 
%0 Journal Article
%A M. V. Meshcheryakov
%T Upper estimates for the Morse numbers of the matrix elements of real linear irreducible representations for connected compact simple Lie groups
%J Algebra i analiz
%D 2021
%P 107-120
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_6_a5/
%G ru
%F AA_2021_33_6_a5
M. V. Meshcheryakov. Upper estimates for the Morse numbers of the matrix elements of real linear irreducible representations for connected compact simple Lie groups. Algebra i analiz, Tome 33 (2021) no. 6, pp. 107-120. http://geodesic.mathdoc.fr/item/AA_2021_33_6_a5/

[1] Pontryagin L. S., “Homologies in compact Lie groups”, Mat. sb., 6:3 (1939), 389–422

[2] Bott R., Samelson H., “Applications of the theory of Morse to symmetric spaces”, Amer. J. Math., 80 (1958), 964–1029

[3] Gorodski C., Thorbergsson G., “The classification of taut irreducible representations”, J. Reine Angew. Math., 555 (2003), 187–235

[4] Mescheryakov M. V., “Klassifikatsiya uprugikh veschestvennykh neprivodimykh lineinykh predstavlenii kompaktnykh svyaznykh grupp Li”, Algebra i analiz, 32:1 (2020), 40–50

[5] Burbaki N., Gruppy i algebry Li. Kompaktnye veschestvennye gruppy Li, Gl. IX, Mir, M., 1986

[6] Kushnirenko A. G., “Mnogogrannik Nyutona i chislo reshenii sistemy k uravnenii s k neizvestnymi”, Uspekhi mat. nauk, 30:2 (1975), 266–267

[7] Kazarnovskii B. Ya., “Mnogogranniki Nyutona i formula Bezu dlya matrichnykh funktsii konechnomernykh predstavlenii”, Funkts. anal. i ego pril., 21:4 (1987), 73–74

[8] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 2, Nauka, M., 1981

[9] Chern S., Lashof R. K., “On the total curvature of immersed manifolds. II”, Michigan J. Math., 5 (1958), 5–12

[10] Keiper N., “Minimalnaya totalnaya krivizna. Vzglyad na starye i novye rezultaty”, Uspekhi mat. nauk, 40:4 (1985), 49–55

[11] Burago D. M., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980

[12] Nicolaescu L., “Critical sets of random smooth functions on compact manifolds”, Asian J. Math., 19:3 (2015), 391–432

[13] Nicolaescu L., “Complexity of random smooth functions on compact manifolds”, Indiana Univ. Math. J., 63:4 (2014), 1037–1065

[14] Onischik A. L., Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995

[15] Bishop R. L., Krittenden R. Dzh., Geometriya mnogoobrazii, Mir, M., 1967

[16] Abe K., Yokota I., “Volumes of compact symmetric spaces”, Tokyo J. Math., 20 (1997), 87–105

[17] Kozhasov K., “On spherical harmonics with maximum number of critical points”, Intern. Conf. “Contemporary Mathematics” (Moscow, Russia, December, 2017), 18–23