Invariant subspaces of the generalized backward shift operator and rational functions
Algebra i analiz, Tome 33 (2021) no. 6, pp. 49-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_6_a2,
     author = {O. A. Ivanova and S. N. Melikhov and Yu. N. Melikhov},
     title = {Invariant subspaces of the generalized backward shift operator and rational functions},
     journal = {Algebra i analiz},
     pages = {49--70},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_6_a2/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
AU  - Yu. N. Melikhov
TI  - Invariant subspaces of the generalized backward shift operator and rational functions
JO  - Algebra i analiz
PY  - 2021
SP  - 49
EP  - 70
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_6_a2/
LA  - ru
ID  - AA_2021_33_6_a2
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%A Yu. N. Melikhov
%T Invariant subspaces of the generalized backward shift operator and rational functions
%J Algebra i analiz
%D 2021
%P 49-70
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_6_a2/
%G ru
%F AA_2021_33_6_a2
O. A. Ivanova; S. N. Melikhov; Yu. N. Melikhov. Invariant subspaces of the generalized backward shift operator and rational functions. Algebra i analiz, Tome 33 (2021) no. 6, pp. 49-70. http://geodesic.mathdoc.fr/item/AA_2021_33_6_a2/

[1] Gribov M. B., Nikolskii N. K., “Invariantnye podprostranstva i ratsionalnaya approksimatsiya”, Zap. nauch. semin. LOMI, 92, 1979, 103–114

[2] Ivanova O. A., Melikhov S. N., “Ob orbitakh analiticheskikh funktsii otnositelno operatora tipa Pomme”, Ufim. mat. zh., 7:4 (2015), 75–79

[3] Ivanova O. A., Melikhov S. N., “Ob invariantnykh podprostranstvakh operatora Pomme v prostranstvakh tselykh funktsii eksponentsialnogo tipa”, Kompleksnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 142, VINITI, M., 2017, 111–120

[4] Kazmin Yu. A., “O posledovatelnykh ostatkakh ryada Teilora”, Vestn. MGU. Ser. 1. Mat. Mekh., 1963, no. 5, 35–46

[5] Linchuk N. E., “Predstavlenie kommutantov operatora Pomme i ikh prilozheniya”, Mat. zametki, 44:6 (1988), 794–802

[6] Nikolskii N. K., “Invariantnye podprostranstva v teorii operatorov i teorii funktsii”, Itogi nauki i tekhn. Ser. Mat. anal., 12, VINITI, M., 1974, 199–412

[7] Tumarkin G. Ts., “Opisanie klassa funktsii, dopuskayuschikh priblizhenie drobyami s fiksirovannymi polyusami”, Izv. AN ArmSSR. Ser. mat., 1:2 (1966), 89–105

[8] Khavin V. P., “Prostranstva analiticheskikh funktsii”, Itogi nauki. Ser. Mat. Mat. Anal. 1964, VINITI, M., 1966, 76–164

[9] Khaplanov M. G., “O polnote nekotorykh sistem analiticheskikh funktsii”, Uch. zap. Rostov. gos. ped. in-ta, 1955, no. 3, 53–58

[10] Aleman A., Richter S., Sundberg C., “Invariant subspaces for the backward shift on Hilbert space of analytic functions with regular norm”, Bergman Spaces and Related Topics in Complex Analysis, Israel Math. Conf. Proc., Contemp. Math., 404, Amer. Math. Soc., Providence, RI, 2006

[11] Berenstein C. A., Gay R., Complex variables: An introduction, Grad. Texts in Math., 125, Springer-Verlag, New York, 1991

[12] Cima J. A., Ross W. T., The backward shift on the Hardy space, Math. Surveys Monogr., 79, Amer. Math. Soc., Providence, RI, 2000

[13] Douglas R. G., Shapiro H. S., Shields A. L., “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 37–76

[14] Köthe G., “Dualität in der Funktionentheorie”, J. Reine Angew. Math., 191:1-2 (1953), 30–49

[15] Linchuk Yu. S., “Cyclical elements of operators which are left-inverses to multiplication by an independent variable”, Methods Funct. Anal. Topology, 12:4 (2006), 384–388