Absence of the eigenvalues in the spectra of operators with partially periodic coefficients
Algebra i analiz, Tome 33 (2021) no. 5, pp. 176-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_5_a5,
     author = {N. D. Filonov},
     title = {Absence of the eigenvalues in the spectra of operators with partially periodic coefficients},
     journal = {Algebra i analiz},
     pages = {176--192},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_5_a5/}
}
TY  - JOUR
AU  - N. D. Filonov
TI  - Absence of the eigenvalues in the spectra of operators with partially periodic coefficients
JO  - Algebra i analiz
PY  - 2021
SP  - 176
EP  - 192
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_5_a5/
LA  - ru
ID  - AA_2021_33_5_a5
ER  - 
%0 Journal Article
%A N. D. Filonov
%T Absence of the eigenvalues in the spectra of operators with partially periodic coefficients
%J Algebra i analiz
%D 2021
%P 176-192
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_5_a5/
%G ru
%F AA_2021_33_5_a5
N. D. Filonov. Absence of the eigenvalues in the spectra of operators with partially periodic coefficients. Algebra i analiz, Tome 33 (2021) no. 5, pp. 176-192. http://geodesic.mathdoc.fr/item/AA_2021_33_5_a5/

[1] Birman M. Sh., Solomyak M. Z., “Samosopryazhennyi operator Maksvella v proizvolnykh oblastyakh”, Algebra i analiz, 1:1 (1989), 96–110

[2] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | Zbl

[3] Filonov N. D., “Absolyutnaya nepreryvnost dvumernogo operatora Shredingera s chastichno periodicheskimi koeffitsientami”, Algebra i analiz, 29:2 (2017), 220–241 | MR

[4] Filonov N. D., “Operator Shredingera v tsilindre s ubyvayuschim potentsialom”, Algebra i analiz, 33:1 (2021), 213–245 | MR

[5] Filonov N., Klopp F., “Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others”, Doc. Math., 9 (2004), 107–121 | MR | Zbl

[6] Filonov N., Klopp F., “Absolutely continuous spectrum for the isotropic Maxwell operator with coefficients that are periodic in some directions and decay in others”, Comm. Math. Phys., 258:1 (2005), 75–85 | DOI | MR | Zbl

[7] Hoang V., Radosz M., “Absence of bound states for waveguides in 2D periodic structures”, J. Math. Phys., 55:3 (2014), 033506 | DOI | MR | Zbl

[8] Morame A., “The absolute continuity of the spectrum of Maxwell operator in a periodic media”, J. Math. Phys., 41:10 (2000), 7099–7108 | DOI | MR | Zbl

[9] Prokhorov A. O., Filonov N. D., “Operator Maksvella s periodicheskimi koeffitsientami v tsilindre”, Algebra i analiz, 29:6 (2017), 182–196

[10] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982

[11] Suslina T. A., “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Maksvella v sloe”, Zap. nauch. semin. POMI, 288, 2002, 232–255 | Zbl

[12] Yafaev D. R., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, SPbGU, SPb., 1994

[13] Yafaev D. R., Mathematical scattering theory. Analytic theory, Math. Surveys Monogr., 158, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl