Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_5_a5, author = {N. D. Filonov}, title = {Absence of the eigenvalues in the spectra of operators with partially periodic coefficients}, journal = {Algebra i analiz}, pages = {176--192}, publisher = {mathdoc}, volume = {33}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_5_a5/} }
N. D. Filonov. Absence of the eigenvalues in the spectra of operators with partially periodic coefficients. Algebra i analiz, Tome 33 (2021) no. 5, pp. 176-192. http://geodesic.mathdoc.fr/item/AA_2021_33_5_a5/
[1] Birman M. Sh., Solomyak M. Z., “Samosopryazhennyi operator Maksvella v proizvolnykh oblastyakh”, Algebra i analiz, 1:1 (1989), 96–110
[2] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | Zbl
[3] Filonov N. D., “Absolyutnaya nepreryvnost dvumernogo operatora Shredingera s chastichno periodicheskimi koeffitsientami”, Algebra i analiz, 29:2 (2017), 220–241 | MR
[4] Filonov N. D., “Operator Shredingera v tsilindre s ubyvayuschim potentsialom”, Algebra i analiz, 33:1 (2021), 213–245 | MR
[5] Filonov N., Klopp F., “Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others”, Doc. Math., 9 (2004), 107–121 | MR | Zbl
[6] Filonov N., Klopp F., “Absolutely continuous spectrum for the isotropic Maxwell operator with coefficients that are periodic in some directions and decay in others”, Comm. Math. Phys., 258:1 (2005), 75–85 | DOI | MR | Zbl
[7] Hoang V., Radosz M., “Absence of bound states for waveguides in 2D periodic structures”, J. Math. Phys., 55:3 (2014), 033506 | DOI | MR | Zbl
[8] Morame A., “The absolute continuity of the spectrum of Maxwell operator in a periodic media”, J. Math. Phys., 41:10 (2000), 7099–7108 | DOI | MR | Zbl
[9] Prokhorov A. O., Filonov N. D., “Operator Maksvella s periodicheskimi koeffitsientami v tsilindre”, Algebra i analiz, 29:6 (2017), 182–196
[10] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982
[11] Suslina T. A., “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Maksvella v sloe”, Zap. nauch. semin. POMI, 288, 2002, 232–255 | Zbl
[12] Yafaev D. R., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, SPbGU, SPb., 1994
[13] Yafaev D. R., Mathematical scattering theory. Analytic theory, Math. Surveys Monogr., 158, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl