Approximation by polyanalytic functions in H\"{o}lder spaces
Algebra i analiz, Tome 33 (2021) no. 5, pp. 125-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_5_a3,
     author = {M. Ya. Mazalov},
     title = {Approximation by polyanalytic functions in {H\"{o}lder} spaces},
     journal = {Algebra i analiz},
     pages = {125--152},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_5_a3/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - Approximation by polyanalytic functions in H\"{o}lder spaces
JO  - Algebra i analiz
PY  - 2021
SP  - 125
EP  - 152
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_5_a3/
LA  - ru
ID  - AA_2021_33_5_a3
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T Approximation by polyanalytic functions in H\"{o}lder spaces
%J Algebra i analiz
%D 2021
%P 125-152
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_5_a3/
%G ru
%F AA_2021_33_5_a3
M. Ya. Mazalov. Approximation by polyanalytic functions in H\"{o}lder spaces. Algebra i analiz, Tome 33 (2021) no. 5, pp. 125-152. http://geodesic.mathdoc.fr/item/AA_2021_33_5_a3/

[1] Balk M. B., Polyanalytic functions, Math. Res., 63, Akademie-Verlag, Berlin, 1991 | MR | Zbl

[2] Mazalov M. Ya., Paramonov P. V., Fedorovskii K. Yu., “Usloviya $C^m$-priblizhaemosti funktsii resheniyami ellipticheskikh uravnenii”, Uspekhi mat. nauk, 67:6 (2012), 53–100 | MR | Zbl

[3] Buave A., Paramonov P. V., “Approksimatsiya meromorfnymi i tselymi resheniyami ellipticheskikh uravnenii v banakhovykh prostranstvakh raspredelenii”, Mat. sb., 189:4 (1998), 3–24

[4] Mazalov M. Ya., Paramonov P. V., “Kriterii $C^m$-priblizhaemosti bianaliticheskimi funktsiyami na ploskikh kompaktakh”, Mat. sb., 206:2 (2014), 77–118

[5] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, Uspekhi mat. nauk, 22:6 (1967), 141–199 | MR

[6] O'Farrell A. G., “Hausdorff content and rational approximation in fractional Lipschitz norms”, Trans. Amer. Math. Soc., 228 (1977), 187–206 | DOI | MR

[7] Paramonov P. V., “Nekotorye novye kriterii ravnomernoi priblizhaemosti funktsii ratsionalnymi drobyami”, Mat. sb., 186:9 (1995), 97–112 | MR | Zbl

[8] Mazalov M. Ya., “Kriterii ravnomernoi priblizhaemosti na proizvolnykh kompaktakh dlya reshenii ellipticheskikh uravnenii”, Mat. sb., 199:1 (2008), 15–46 | MR | Zbl

[9] Mateu J., Netrusov Yu., Orobitg J., Verdera J., “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier. (Grenoble), 46:4 (1996), 1057–1081 | DOI | MR

[10] Mateu J., Verdera J., “BMO harmonic approximation in the plane and spectral synthesis for Hardy–Sobolev spaces”, Rev. Mat. Iberoam., 4:2 (1988), 291–318 | DOI | MR | Zbl

[11] Mazalov M. Ya., “Bianalytic capacities and Calderon commutators”, Anal. Math. Phys., 9:3 (2019), 1099–1113 | DOI | MR | Zbl

[12] Mattila P., Orobitg J., “On some properties of Hausdorff content related to instability”, Ann. Acad. Sci. Fen. Ser. A. I. Math., 19:2 (1994), 393–398 | MR | Zbl

[13] Melnikov M., Orobitg J., “An counterexample to a Vitali type theorem with respect to Hausdorff content”, Proc. Amer. Math. Soc., 118:3 (1991), 849–856 | DOI | MR

[14] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[15] Harvey R., Polking J., “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl

[16] Verdera J., “${\rm C}^m$ approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl

[17] Mateu J., Orobitg J., “Lipshitz approximation by harmonic functions and some applications to spectral sinthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl

[18] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971

[19] Mazalov M. Ya., “O ravnomernykh priblizheniyakh bianaliticheskimi funktsiyami na proizvolnykh kompaktakh v $\mathbb{C}$”, Mat. sb., 195:5 (2004), 79–102 | MR | Zbl