String equation with weight that is a noncompact multiplier: continuous spectrum and eigenvalues
Algebra i analiz, Tome 33 (2021) no. 4, pp. 155-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_4_a7,
     author = {E. B. Sharov and I. A. Sheipak},
     title = {String equation with weight that is a noncompact multiplier: continuous spectrum and eigenvalues},
     journal = {Algebra i analiz},
     pages = {155--172},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a7/}
}
TY  - JOUR
AU  - E. B. Sharov
AU  - I. A. Sheipak
TI  - String equation with weight that is a noncompact multiplier: continuous spectrum and eigenvalues
JO  - Algebra i analiz
PY  - 2021
SP  - 155
EP  - 172
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_4_a7/
LA  - ru
ID  - AA_2021_33_4_a7
ER  - 
%0 Journal Article
%A E. B. Sharov
%A I. A. Sheipak
%T String equation with weight that is a noncompact multiplier: continuous spectrum and eigenvalues
%J Algebra i analiz
%D 2021
%P 155-172
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_4_a7/
%G ru
%F AA_2021_33_4_a7
E. B. Sharov; I. A. Sheipak. String equation with weight that is a noncompact multiplier: continuous spectrum and eigenvalues. Algebra i analiz, Tome 33 (2021) no. 4, pp. 155-172. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a7/

[1] Krein M. G., “Opredelenie plotnosti neodnorodnoi simmetrichnoi struny”, Dokl. AN SSSR, 76:3 (1951), 345–348 | Zbl

[2] Solomyak M., Verbitsky E., “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl

[3] Nazarov A. I., “Logarifmicheskaya asimptotika malykh uklonenii dlya nekotorykh gaussovskikh protsessov v $L_2$-norme otnositelno samopodobnoi mery”, Zap. nauch. semin. POMI, 311, 2004, 190–213 | Zbl

[4] Vladimirov A. A., Sheipak I. A., “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym vesom”, Mat. sb., 197:11 (2006), 13–30 | MR | Zbl

[5] Vladimirov A. A., Sheipak I. A., “Indefinitnaya zadacha Shturma–Liuvillya dlya nekotorykh klassov samopodobnykh singulyarnykh vesov”, Tr. Mat. in-ta RAN, 255, 2006, 88–98 | Zbl

[6] Vladimirov A. A., Sheipak I. A., “Asimptotika sobstvennykh znachenii zadachi Shturma–Liuvillya s diskretnym samopodobnym vesom”, Mat. zametki, 88:5 (2010), 662–672 | MR | Zbl

[7] Tikhonov Yu V., Sheipak I. A., “Ob uravnenii struny s singulyarnym vesom iz prostranstva multiplikatorov v prostranstvakh Soboleva s otritsatelnym pokazatelem gladkosti”, Izv. RAN. Ser. mat., 80:6 (2016), 258–273 | MR | Zbl

[8] Kats I. S., Krein M. G., “Kriterii diskretnosti spektra singulyarnoi struny”, Izv. vuzov. Mat., 1958, no. 2, 136–153

[9] Tikhonov Yu. V., “Opredelenie samopodobnoi funktsii v kvazibanakhovykh prostranstvakh”, Mat. zametki, 106:6 (2019), 917–923 | Zbl

[10] Sheipak I. A., “Osobye tochki samopodobnoi funktsii nulevogo spektralnogo poryadka. Samopodobnaya struna Stiltesa”, Mat. zametki, 88:2 (2010), 303–316 | MR | Zbl

[11] Sheipak I. A., “O spektre operatora Yakobi s eksponentsialno rastuschimi matrichnymi elementami”, Vestn. Mosk. un-ta. Ser. 1. Mat., mekh., 2011, no. 6, 15–21 | MR | Zbl

[12] Stankevich I. V., “Ob odnoi obratnoi zadache dlya periodicheskikh matrits Yakobi”, Mat. zametki, 8:3 (1970), 297–307 | MR

[13] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, v. 1, Izd-vo Kharkov. gos. un-ta. Vischa Shkola, Kharkov, 1977 | MR

[14] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s nei, Gos. izd.-vo fiz.-mat. lit., M., 1961

[15] Hellinger E. D., Wall H. S., “Contributions to the analytic theory of continued fractions and infinite matrices”, Ann. of Math. (2), 44:1, 103–127 | DOI | MR | Zbl