Positivity principle for measures on uniformly convex Banach spaces
Algebra i analiz, Tome 33 (2021) no. 4, pp. 141-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_4_a6,
     author = {E. A. Riss},
     title = {Positivity principle for measures on uniformly convex {Banach} spaces},
     journal = {Algebra i analiz},
     pages = {141--154},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a6/}
}
TY  - JOUR
AU  - E. A. Riss
TI  - Positivity principle for measures on uniformly convex Banach spaces
JO  - Algebra i analiz
PY  - 2021
SP  - 141
EP  - 154
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_4_a6/
LA  - ru
ID  - AA_2021_33_4_a6
ER  - 
%0 Journal Article
%A E. A. Riss
%T Positivity principle for measures on uniformly convex Banach spaces
%J Algebra i analiz
%D 2021
%P 141-154
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_4_a6/
%G ru
%F AA_2021_33_4_a6
E. A. Riss. Positivity principle for measures on uniformly convex Banach spaces. Algebra i analiz, Tome 33 (2021) no. 4, pp. 141-154. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a6/

[1] Christensen J. P. R., “A survey of small ball theorems and problems”, Measure theory (Oberwolfach, 1979), Lecture Notes in Math., 794, Springer-Verlag, Berlin, 1980, 24–30 | DOI | MR

[2] Mejlbro L., Preiss D., Tišer J., “Positivity principles in geometrical measure theory”, Measure theory (Oberwolfach, 1990), Rend. Circ. Mat. Palermo (2) Suppl., 28, no. 2, 1992, 163–167 | MR | Zbl

[3] Riss E. A., “O merakh, sovpadayuschikh na sharakh”, Zap. nauch. semin. LOMI, 177, 1989, 122–128

[4] Preiss D., “Differentiation of measures in infinitely-dimensional spaces”, Proc. Conf. Topology and Measure III (Vitter/Hiddensee, 1980), v. 1, 2, Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Creifswald, 1982, 201–207 | MR

[5] Preiss D., Tišer J., “Positivity principle for more concentrated measures”, Math. Scand., 81:2 (1997), 236–246 | DOI | MR | Zbl

[6] Riss E. A., “Printsip polozhitelnosti dlya ekvivalentnykh norm”, Algebra i analiz, 12:3 (2000), 146–172

[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1977 | MR

[8] Figiel T., Milman V. D., Lindenstrauss J., “The dimension of almost spherical sections of convex bodies”, Acta Math., 139:1-2 (1977), 53–94 | DOI | MR | Zbl