Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_4_a6, author = {E. A. Riss}, title = {Positivity principle for measures on uniformly convex {Banach} spaces}, journal = {Algebra i analiz}, pages = {141--154}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a6/} }
E. A. Riss. Positivity principle for measures on uniformly convex Banach spaces. Algebra i analiz, Tome 33 (2021) no. 4, pp. 141-154. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a6/
[1] Christensen J. P. R., “A survey of small ball theorems and problems”, Measure theory (Oberwolfach, 1979), Lecture Notes in Math., 794, Springer-Verlag, Berlin, 1980, 24–30 | DOI | MR
[2] Mejlbro L., Preiss D., Tišer J., “Positivity principles in geometrical measure theory”, Measure theory (Oberwolfach, 1990), Rend. Circ. Mat. Palermo (2) Suppl., 28, no. 2, 1992, 163–167 | MR | Zbl
[3] Riss E. A., “O merakh, sovpadayuschikh na sharakh”, Zap. nauch. semin. LOMI, 177, 1989, 122–128
[4] Preiss D., “Differentiation of measures in infinitely-dimensional spaces”, Proc. Conf. Topology and Measure III (Vitter/Hiddensee, 1980), v. 1, 2, Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Creifswald, 1982, 201–207 | MR
[5] Preiss D., Tišer J., “Positivity principle for more concentrated measures”, Math. Scand., 81:2 (1997), 236–246 | DOI | MR | Zbl
[6] Riss E. A., “Printsip polozhitelnosti dlya ekvivalentnykh norm”, Algebra i analiz, 12:3 (2000), 146–172
[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1977 | MR
[8] Figiel T., Milman V. D., Lindenstrauss J., “The dimension of almost spherical sections of convex bodies”, Acta Math., 139:1-2 (1977), 53–94 | DOI | MR | Zbl