Heptagon relation in a direct sum
Algebra i analiz, Tome 33 (2021) no. 4, pp. 125-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_4_a5,
     author = {I. G. Korepanov},
     title = {Heptagon relation in a direct sum},
     journal = {Algebra i analiz},
     pages = {125--140},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a5/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Heptagon relation in a direct sum
JO  - Algebra i analiz
PY  - 2021
SP  - 125
EP  - 140
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_4_a5/
LA  - ru
ID  - AA_2021_33_4_a5
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Heptagon relation in a direct sum
%J Algebra i analiz
%D 2021
%P 125-140
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_4_a5/
%G ru
%F AA_2021_33_4_a5
I. G. Korepanov. Heptagon relation in a direct sum. Algebra i analiz, Tome 33 (2021) no. 4, pp. 125-140. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a5/

[1] Dimakis A., Korepanov I. G., “Grassmannian-parameterized solutions to direct-sum polygon and simplex equations”, J. Math. Phys., 62 (2021), 051701 | DOI | MR | Zbl

[2] Dimakis A., Müller-Hoissen F., “Simplex and polygon equations”, SIGMA Symmetry Integrability Geom. Methods Appl., 11 (2015), 042 | MR | Zbl

[3] Hietarinta J., “Permutation-type solutions to the Yang–Baxter and other $n$-simplex equations”, J. Phys. A, 30:13 (1997), 4757–4771 | DOI | MR | Zbl

[4] Korepanov I. G., Sadykov N. M., “Pentagon relations in direct sums and Grassmann algebras”, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), 030 | MR | Zbl

[5] Korepanov I. G., Sadykov N. M., Hexagon cohomologies and polynomial TQFT actions, arXiv: 1707.02847

[6] Korepanov I. G., “Nonconstant hexagon relations and their cohomology”, Lett. Math. Phys., 111:1 (2021), 1 | DOI | MR | Zbl

[7] Levenberg K., “A method for the solution of certain non-linear problems in least squares”, Quart. Appl. Math., 2 (1944), 164–168 | DOI | MR | Zbl

[8] Lickorish W. B. R., “Simplicial moves on complexes and manifolds”, Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320 | DOI | MR | Zbl

[9] Marquardt D. W., “An algorithm for least-squares estimation of nonlinear parameters”, J. Soc. Indust. Appl. Math., 11:2 (1963), 431–441 | DOI | MR | Zbl

[10] Pachner U., “PL homeomorphic manifolds are equivalent by elementary shellings”, Europ. J. Combin., 12:2 (1991), 129–145 | DOI | MR | Zbl

[11] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR