Projective free algebras of bounded holomorphic functions on infinitely connected domains
Algebra i analiz, Tome 33 (2021) no. 4, pp. 49-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algebra $H^\infty(D)$ of bounded holomorphic functions on $D\subset\mathbb C$ is projective free for a wide class of infinitely connected domains. In particular, for such $D$ every rectangular left-invertible matrix with entries in $H^\infty(D)$ can be extended in this class of matrices to an invertible square matrix. This follows from a new result on the structure of the maximal ideal space of $H^\infty(D)$ asserting that its covering dimension is $2$ and the second Čech cohomology group is trivial.
Keywords: Maximal ideal space, corona problem, projective free ring, Hermite ring, covering dimension, Čech cohomology.
@article{AA_2021_33_4_a2,
     author = {A. Brudnyi},
     title = {Projective free algebras of bounded holomorphic functions on infinitely connected domains},
     journal = {Algebra i analiz},
     pages = {49--65},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a2/}
}
TY  - JOUR
AU  - A. Brudnyi
TI  - Projective free algebras of bounded holomorphic functions on infinitely connected domains
JO  - Algebra i analiz
PY  - 2021
SP  - 49
EP  - 65
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_4_a2/
LA  - en
ID  - AA_2021_33_4_a2
ER  - 
%0 Journal Article
%A A. Brudnyi
%T Projective free algebras of bounded holomorphic functions on infinitely connected domains
%J Algebra i analiz
%D 2021
%P 49-65
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_4_a2/
%G en
%F AA_2021_33_4_a2
A. Brudnyi. Projective free algebras of bounded holomorphic functions on infinitely connected domains. Algebra i analiz, Tome 33 (2021) no. 4, pp. 49-65. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a2/

[1] Behrens M., “The maximal ideal space of algebras of bounded analytic functions on infinitely connected domains”, Trans. Amer. Math. Soc., 161 (1971), 359–380 | DOI | MR

[2] Brudnyi A., “Projections in the space $H^\infty$ and the Corona Theorem for coverings of bordered Riemann surfaces”, Ark. Mat., 42:1 (2004), 31–59 | DOI | MR | Zbl

[3] Brudnyi A., “Grauert- and Lax–Halmos-type theorems and extension of matrices with entries in $H^\infty$”, J. Funct. Anal., 206 (2004), 87–108 | DOI | MR | Zbl

[4] Brudnyi A., “Holomorphic functions of slow growth on coverings of pseudoconvex domains in Stein manifolds”, Compos. Math., 142:4 (2006), 1018–1038 | DOI | MR | Zbl

[5] Brudnyi A., “Extension of matrices with entries in $H^\infty$ on coverings of Riemann surfaces of finite type”, Algebra i analiz, 21:3 (2010), 423–432 | MR | Zbl

[6] Brudnyi A., “Topology of the maximal ideal space of $H^\infty$ revisited”, Adv. Math., 299 (2016), 931–939 | DOI | MR | Zbl

[7] Brudnyi A., “Structure of the maximal ideal space of $H^\infty$ on the countable disjoint union of open disks”, Algebra i analiz, 32:6 (2020), 58–71 | MR

[8] Brudnyi A., “On homotopy invariants of tensor products of Banach algebras”, Integral Equations Operator Theory, 92:2 (2020), 19 | DOI | MR | Zbl

[9] Bungart L., “On analytic fibre bundles. I. Holomorphic fibre bundles with infinite dimensional fibres”, Topology, 7:1 (1968), 55–68 | DOI | MR | Zbl

[10] Brudnyi A., Sasane A., “Sufficient conditions for the projective freeness of Banach algebras”, J. Funct. Anal., 257:12 (2009), 4003–4014 | DOI | MR | Zbl

[11] Carleson L., “Interpolations by bounded analytic functions and the corona theorem”, Ann. of Math. (2), 76 (1962), 547–559 | DOI | MR | Zbl

[12] Cohn P. M., Free rings and their relations, London Math. Soc. Monogr., 19, 2nd ed., Acad. Press, London, 1985 | MR | Zbl

[13] Douglas R. G., Krantz S. G., Sawyer E. T., Treil S., Wick B. D. (eds.), The corona problem: Connections between operator theory, function theory, and geometry, Fields Inst. Commun., 72, Springer, New York, 2014 | DOI | MR | Zbl

[14] Garnett J. B., Bounded analytic functions, Pure Appl. Math., 96, Acad. Press, New York, 1981 | MR | Zbl

[15] Hu S.-T., Homotopy theory, Pure Appl. Math., 8, Acad. Press, New York, 1959 | MR | Zbl

[16] Maskit B., Kleinian groups, Grundlehren Math. Wiss., 287, Springer-Verlag, New York, 1988 | MR | Zbl

[17] Nagami K., Dimension theory, Pure Appl. Math., 37, Acad. Press, New York, 1970 | MR

[18] Nikolskii N. K., Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986 | MR | Zbl

[19] Suárez D., “Čech cohomology and covering dimension for the $H^\infty$ maximal ideal space”, J. Funct. Anal., 123:2 (1994), 233–263 | DOI | MR

[20] Tolokonnikov V., “Extension problem to an invertible matrix”, Proc. Amer. Math. Soc., 117:4 (1993), 1023–1030 | DOI | MR | Zbl

[21] Tolokonnikov V., “Stable rank of $H^\infty$ in multiply connected domains”, Proc. Amer. Math. Soc., 123:10 (1995), 3151–3156 | MR | Zbl