Banach limits: extreme properties, invariance, and the Fubini theorem
Algebra i analiz, Tome 33 (2021) no. 4, pp. 32-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_4_a1,
     author = {N. N. Avdeev and E. M. Semenov and A. S. Usachev},
     title = {Banach limits: extreme properties, invariance, and the {Fubini} theorem},
     journal = {Algebra i analiz},
     pages = {32--48},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a1/}
}
TY  - JOUR
AU  - N. N. Avdeev
AU  - E. M. Semenov
AU  - A. S. Usachev
TI  - Banach limits: extreme properties, invariance, and the Fubini theorem
JO  - Algebra i analiz
PY  - 2021
SP  - 32
EP  - 48
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_4_a1/
LA  - ru
ID  - AA_2021_33_4_a1
ER  - 
%0 Journal Article
%A N. N. Avdeev
%A E. M. Semenov
%A A. S. Usachev
%T Banach limits: extreme properties, invariance, and the Fubini theorem
%J Algebra i analiz
%D 2021
%P 32-48
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_4_a1/
%G ru
%F AA_2021_33_4_a1
N. N. Avdeev; E. M. Semenov; A. S. Usachev. Banach limits: extreme properties, invariance, and the Fubini theorem. Algebra i analiz, Tome 33 (2021) no. 4, pp. 32-48. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a1/

[1] Mazur S., “O metodach sumomalności”, Ann. Soc. Polon. Math. Suppl., 1929, 102–107

[2] Banakh S., Teoriya lineinykh operatsii, Regulyar. i khaot. dinamika, M., 2001

[3] Keri A. L., Sukochev F. A., “Sledy Diksme i nekotorye prilozheniya v nekommutativnoi geometrii”, Uspekhi mat. nauk, 61:6 (2006), 45–110 | MR

[4] Semenov E. M., Shteinberg A. M., “Otsenki norm operatornykh blokov v banakhovykh reshetkakh”, Mat. sb., 126:3 (1985), 327–343 | MR

[5] Astashkin S. V., Semenov E. M., “Konstanty Lebega sistemy Uolsha i banakhovy predely”, Sib. mat. zh., 57:3 (2016), 512–526 | MR | Zbl

[6] Semenov E. M., Usachev A. S., “Koeffitsienty Fure-Khaara i banakhovy predely”, Dokl. RAN, 425:2 (2009), 172–173 | Zbl

[7] Usachev A., “On Fourier–Haar coefficients of the function from the Marcinkiewicz space”, J. Math. Anal. Appl., 414:1 (2014), 110–124 | DOI | MR | Zbl

[8] Semenov E. M., Sukochev F. A., Usachev A. S., “Geometriya banakhovykh predelov i ikh prilozheniya”, Uspekhi mat. nauk, 75:4 (2020), 153–194 | MR | Zbl

[9] Lorentz G. G., “A contribution to the theory of divergent sequences”, Acta Math., 80:1 (1948), 167–190 | DOI | MR | Zbl

[10] Sucheston L., “Banach limits”, Amer. Math. Monthly, 74 (1967), 308–311 | DOI | MR | Zbl

[11] Luxemburg W. A. J., “Nonstandard hulls, generalized limits and almost convergence”, Analysis and geometry, Bibliographisches Inst., Mannheim, 1992, 19–45 | MR

[12] Alekhno E. A., “Superposition operator on the space of sequences almost converging to zero”, Cent. Eur. J. Math., 10:2 (2012), 619–645 | DOI | MR | Zbl

[13] Semenov E. M., Sukochev F. A., Usachev A. S., “Geometricheskie svoistva mnozhestva banakhovykh predelov”, Izv. RAN. Ser. mat., 78:3 (2014), 177–204 | MR | Zbl

[14] Alekhno E. A., Semenov E. M, Sukochev F. A., Usachev A. S., “Invariant Banach limits and their extreme points”, Studia Math., 242:1 (2018), 79–107 | DOI | MR | Zbl

[15] Semenov E. M, Sukochev F. A., Usachev A. S., Zanin D., “Invariant Banach limits and applications to noncommutative geometry”, Pacific J. Math., 306:1 (2020), 357–373 | DOI | MR | Zbl

[16] Semenov E. M, Sukochev F. A., Usachev A. S., Zanin D., “Dilation invariant Banach limits”, Indagationes Math., 31:5 (2020), 885–892 | DOI | MR | Zbl

[17] Avdeev N. N., Semenov E. M., Usachev A. S., “Banakhovy predely i mera na mnozhestve posledovatelnostei iz $0$ i $1$”, Mat. zametki, 106:5 (2019), 784–787 | MR | Zbl

[18] Semenov E. M., Sukochev F. A., “Kharakteristicheskie funktsii banakhovykh predelov”, Sib. mat. zh., 51:4 (2010), 904–910 | MR | Zbl

[19] Connor J., “Almost none of the sequences of $0$'s and $1$'s are almost convergent”, Internat. J. Math. Math. Sci., 13:4 (1990), 775–777 | DOI | MR

[20] Keller G., Moore L. C., Jr., “Invariant means on the group of integers”, Analysis and geometry, Bibliographisches Inst., Mannheim, 1992, 1–18 | MR

[21] Klenke A., Probability theory. A comprehensive course, Universitext, Springer, 2014 | DOI | MR | Zbl

[22] Avdeev N. N., “O prostranstve pochti skhodyaschikhsya posledovatelnostei”, Mat. zametki, 105:3 (2019), 462–466 | MR | Zbl

[23] Fekete M., “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 17:1 (1923), 228–249 | DOI | MR | Zbl

[24] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 1, Nauka, M., 1978

[25] Edgar G., Measure, topology, and fractal geometry, Undergraduate Texts in Math., Springer, New York, 2008 | DOI | MR | Zbl

[26] Falconer K., Techniques in fractal geometry, John Wiley Sons, Ltd., Chichester, 1997 | MR | Zbl

[27] Eberlein W. F., “Banach–Hausdorff limits”, Proc. Amer. Math. Soc., 1 (1950), 662–665 | DOI | MR | Zbl

[28] Semenov E. M., Sukochev F. A., “Invariant Banach limits and applications”, J. Funct. Anal., 259:6 (2010), 1517–1541 | DOI | MR | Zbl

[29] Alekhno E. A., Semenov E. M., Sukochev F. A., Usachev A. S., “Poryadkovye i geometricheskie svoistva mnozhestva banakhovykh predelov”, Algebra i analiz, 28:3 (2016), 3–35

[30] Fremlin D. H., Talagrand M., “A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means”, Math. Z., 168:2 (1979), 117–142 | DOI | MR | Zbl

[31] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[32] Mokobodzki G., Ultrafiltres rapides sur $N$. Construction d'une densité relative de deux potentiels comparables (1967/68), Séminaire de Théorie du Potentiel, 12, Secretar. math., Paris, 1969 | MR

[33] Björklund M., Hartnick T., “Biharmonic functions on groups and limit theorems for quasimorphisms along random walks”, Geom. Topol., 15:1 (2011), 123–143 | DOI | MR | Zbl