Elliptic solitons and >
Algebra i analiz, Tome 33 (2021) no. 3, pp. 129-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_3_a6,
     author = {V. B. Matveev and A. O. Smirnov},
     title = {Elliptic solitons and <<freak waves>>},
     journal = {Algebra i analiz},
     pages = {129--168},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_3_a6/}
}
TY  - JOUR
AU  - V. B. Matveev
AU  - A. O. Smirnov
TI  - Elliptic solitons and <>
JO  - Algebra i analiz
PY  - 2021
SP  - 129
EP  - 168
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_3_a6/
LA  - ru
ID  - AA_2021_33_3_a6
ER  - 
%0 Journal Article
%A V. B. Matveev
%A A. O. Smirnov
%T Elliptic solitons and <>
%J Algebra i analiz
%D 2021
%P 129-168
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_3_a6/
%G ru
%F AA_2021_33_3_a6
V. B. Matveev; A. O. Smirnov. Elliptic solitons and <>. Algebra i analiz, Tome 33 (2021) no. 3, pp. 129-168. http://geodesic.mathdoc.fr/item/AA_2021_33_3_a6/

[1] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometrical approach to nonlinear evolution equations, Springer Ser. Nonlinear Dynamics, Springer, Berlin, 1994 | MR

[2] Klein K., Matveev B. B., Smirnov A. O., “Tsilindricheskoe uravnenie Kadomtseva–Petviashvili: starye i novye rezultaty”, Teor. mat. fiz., 152:2 (2007), 304–320 | MR | Zbl

[3] Fedele R., De Nicola S., Jovanović D., Grecu D., Visinescu A., “On the mapping connecting the cylindrical nonlinear von Neumann equation with the standard von Neumann equation”, J. Plasma Phys., 76 (2010), 645–653 | DOI

[4] Khusnutdinova K. R., Klein C., Matveev V. B., Smirnov A. O., “On the integrable elliptic cylindrical Kadomtsev–Petviashvili equation”, Chaos, 23 (2013), 013126 | DOI | MR | Zbl

[5] Matveev V. B., Smirnov A. O., “Resheniya tipa “voln-ubiits” uravnenii ierarkhii Ablovitsa–Kaupa–Nyuella–Sigura: edinyi podkhod”, Teor. mat. fiz., 186:2 (2016), 191–220 | MR | Zbl

[6] Calogero F., Degasperis A., Spectral transform and solitons, v. I, Stud. Math. Appl., 13, Tools to solve and investigate nonlinear evolution equations, North-Holland Publ. Co., Amsterdam, 1982 | MR | Zbl

[7] Matveev V. B., Smirnov A. O., “AKNS and NLS hierarchies, MRW solutions, $P_n$ breathers, and beyond”, J. Math. Phys., 59 (2018), 091419 | DOI | MR | Zbl

[8] Smirnov A. O., “Reshenie nelineinogo uravneniya Shredingera v vide dvukhfaznykh strannykh voln”, Teor. mat. fiz., 173:1 (2012), 89–103 | Zbl

[9] Smirnov A. O., “Periodicheskie dvukhfaznye “volny-ubiitsy””, Mat. zametki, 94:6 (2013), 871–883 | Zbl

[10] Smirnov A. O., Golovachev G. M., “Trekhfaznye resheniya nelineinogo uravneniya Shredingera v ellipticheskikh funktsiyakh”, Nelineinaya dinam., 9:3 (2013), 389–407

[11] Smirnov A. O., Matveenko S. G., Semenov S. K., Semenova E. G., “Three-phase freak waves”, SIGMA Symmetry Integrability Geom. Methods Appl., 11 (2015), 032 | MR | Zbl

[12] Belokolos E. D., Enolskii V. Z., “Ellipticheskie solitony Verde i teoriya reduktsii Veiershtrassa”, Funkts. anal. i ego pril., 23:1 (1989), 57–58 | MR | Zbl

[13] Belokolos E. D., Enolskii V. Z., “Izospektralnye deformatsii ellipticheskikh potentsialov”, Uspekhi mat. nauk, 44:5 (1989), 155–156 | MR | Zbl

[14] Enol'skii V. Z., Kostov N. A., “On the Geometry of elliptic solitons”, Acta Appl. Math., 36:1-2 (1994), 57–86 | DOI | MR | Zbl

[15] Belokolos E. D., Enol'skii V. Z., “Reduction of theta functions and elliptic finite-gap potentials”, Acta Appl. Math., 36:1-2 (1994), 87–117 | DOI | MR | Zbl

[16] Previato E., “Victor Enolski (1945–2019)”, Notices Amer. Math. Soc., 67:11 (2020), 1755–1767 | DOI | MR | Zbl

[17] Smirnov A. O., “Finite-gap elliptic solutions of the KdV equation”, Acta Appl. Math., 36:1-2 (1994), 125–166 | DOI | MR | Zbl

[18] Smirnov A. O., “Elliptic solitons and Heun's equation”, CRM Proc. Lect. Notes, 32, Amer. Math. Soc., Providence, RI, 2002, 287–305 | DOI | MR | Zbl

[19] Matveev V .B., Smirnov A. O., “Mnogofaznye resheniya nelokalnykh simmetrichnykh reduktsii uravnenii ierarkhii AKNS: obschii analiz i prosteishie primery”, Teor. mat. fiz., 204:3 (2020), 383–395 | MR | Zbl

[20] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., “The Inverse Scattering Transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl

[21] Lakshmanan M., Porsezian K., Daniel M., “Effect of discreteness on the continuum limit of the Heisenberg spin chain”, Phys. Lett. A, 133 (1988), 483–488 | DOI

[22] Porsezian K., Daniel M., Lakshmanan M., “On the integrability aspects of the one-dimensional classical continuum isotropic Heisenberg spin chain”, J. Math. Phys., 33:5 (1992), 1807–1816 | DOI | MR | Zbl

[23] Daniel M., Porsezian K., Lakshmanan M., “On the integrable models of the higher order water wave equation”, Phys. Lett. A, 174:3 (1993), 237–240 | DOI | MR

[24] Hirota R., “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14 (1973), 805–809 | DOI | MR | Zbl

[25] Dai C. Q., Zhang J. F., “New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients”, J. Phys. A, 39:4 (2006), 723–737 | DOI | MR | Zbl

[26] Ankiewicz A., Soto-Crespo J. M., Akhmediev N., “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602 | DOI | MR

[27] Li L., Wu Z., Wang L., He J., “High-order rogue waves for the Hirota equation”, Ann. Physics, 334 (2013), 198–211 | DOI | MR | Zbl

[28] He J. S., Li C. Z., Porsezian K., “Rogue waves of the Hirota and the Maxwell–Bloch equations”, Phys. Rev. E, 87 (2013), 012913 | DOI

[29] Wang L. H., Porsezian K., He J. S., “Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation”, Phys. Rev. E, 87 (2013), 053202 | DOI

[30] Ankiewicz A., Akhmediev N., “High-order integrable evolution equation and its soliton solutions”, Phys. Lett. A, 378:4 (2014), 358–361 | DOI | MR | Zbl

[31] Chowdury A., Krolikowski W., Akhmediev N., “Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits”, Phys. Rev. E, 96 (2017), 042209 | DOI | MR

[32] Chowdury A., Kedziora D. J., Ankiewicz A., Akhmediev N., “Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions”, Phys. Rev. E, 91:2 (2015), 022919 | DOI | MR

[33] Ankiewicz A., Kedziora D. J., Chowdury A., Bandelow U., Akhmediev N., “Infinite hierarchy of nonlinear Schrödinger equations and their solutions”, Phys. Rev. E, 93:1 (2016), 012206 | DOI | MR

[34] Ankiewicz A., Akhmediev N., “Rogue wave-type solutions for the infinite integrable nonlinear Schrödinger hierarchy”, Phys. Rev. E, 96:1 (2017), 012219 | DOI | MR

[35] Smirnov A. O., Matveev V. B., Some comments on continuous symmetries of AKNS hierarchy equations and their solutions, 2015, arXiv: 1509.1134 | MR

[36] Kedziora D., Ankiewicz A., Chowdury A., Akhmediev N., “Integrable equations of the infinite nonlinear Schrödingier equation hierarchy with time variable coefficients”, Chaos, 25:1 (2015), 103114 | DOI | MR | Zbl

[37] Its A. R., Kotlyarov V. P., “Ob odnom klasse reshenii nelineinogo uravneniya Shredingera”, Dokl. AN USSR Ser. A, 11 (1976), 965–968

[38] Its A. R., “Obraschenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenenii”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1976, no. 7, 39–46 | Zbl

[39] Kotlyarov V. P., Periodic problem for the nonlinear Schrödinger equation, 2014, arXiv: 1401.4445 | Zbl

[40] Smirnov A. O., “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Mat. sb., 185:8 (1994), 103–114 | Zbl

[41] Smirnov A. O., “Ellipticheskie po $t$ resheniya nelineinogo uravneniya Shredingera”, Teor. mat. fiz., 107:2 (1996), 188–200 | MR | Zbl

[42] Smirnov A. O., Semenova E. G., Zinger V., Zinger N., On a periodic solution of the focusing nonlinear Schrödinger equation, 2014, arXiv: 1407.7974

[43] Fay J. D., Theta-functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl

[44] Krazer A., Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903 | MR | Zbl

[45] Baker H. F., Abel's theorem and the allied theory including the theory of theta functions, Cambridge, 1897 | MR

[46] Mumford D., Tata lectures on theta, v. I, Progr. in Math., 28, Birkhäuser Boston Inc., Boston, MA, 1983 | DOI | MR | Zbl

[47] Mumford D., Tata lectures on theta, v. II, Progr. in Math., 43, Birkhäuser Boston Inc., Boston, MA, 1984 | MR | Zbl

[48] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, Uspekhi mat. nauk, 36:2 (1981), 11–80 | MR | Zbl

[49] Smirnov A. O., “Ellipticheskie resheniya uravneniya Kortevega–de Friza”, Mat. zametki, 45:6 (1989), 66–73 | Zbl

[50] Smirnov A. O., “Konechnozonnye resheniya abelevoi tsepochki Tody roda $4$ i $5$ v ellipticheskikh funktsiyakh”, Teor. mat. fiz., 78:1 (1989), 11–21 | MR

[51] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, GITTL, M., 1948

[52] Abramowitz M., Stegun I. A. (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, Nat. Bureau Standards Appl. Math. Ser., 55, Washington, D.C., 1972 | MR