Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_3_a3, author = {S. M. Gusein-Zade}, title = {Index of a singular point of a vector field or of a $1$-form on an orbifold}, journal = {Algebra i analiz}, pages = {73--84}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_3_a3/} }
S. M. Gusein-Zade. Index of a singular point of a vector field or of a $1$-form on an orbifold. Algebra i analiz, Tome 33 (2021) no. 3, pp. 73-84. http://geodesic.mathdoc.fr/item/AA_2021_33_3_a3/
[1] Atiyah M., Segal G., “On equivariant Euler characteristics”, J. Geom. Phys., 6:4 (1989), 671–677 | DOI | MR | Zbl
[2] Bryan J., Fulman J., “Orbifold Euler characteristics and the number of commuting $m$-tuples in the symmetric groups”, Ann. Comb., 2:1 (1998), 1–6 | DOI | MR | Zbl
[3] Caramello Jr. F. C., Introduction to Orbifolds, arXiv: 1909.08699
[4] Chen W., Ruan Y., “Orbifold Gromov-Witten theory”, Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002, 25–85 | DOI | MR | Zbl
[5] Ebeling W., Gusein-Zade S. M., “Radial index and Euler obstruction of a $1$-form on a singular variety”, Geom. Dedicata, 113:1 (2005), 231–241 | DOI | MR | Zbl
[6] Ebeling W., Gusein-Zade S. M., “Equivariant indices of vector fields and $1$-forms”, Eur. J. Math., 1:2 (2015), 286–301 | DOI | MR | Zbl
[7] Gusein-Zade S. M., “Ekvivariantnye analogi eilerovoi kharakteristiki i formuly tipa Makdonalda”, Uspekhi mat. nauk, 72:1 (433) (2017), 3–36 | MR | Zbl
[8] Gusein-Zade S. M., Luengo I., Mele-Ernandez A., “Universalnaya eilerova kharakteristika $V$-mnogoobrazii”, Funkts. anal. i ego pril., 52:4 (2018), 72–85 | MR | Zbl
[9] Hall Jr. M., Combinatorial theory, Wiley-Intersci. Ser. Discrete Math., Second ed., John Wiley Sons, Inc., New York, 1986 | MR | Zbl
[10] Hirzebruch F., Höfer T., “On the Euler number of an orbifold”, Math. Ann., 286:1-3 (1990), 255–260 | DOI | MR | Zbl
[11] Satake I., “On a generalization of the notion of manifold”, Proc. Nat. Acad. Sci. USA, 42 (1956), 359–363 | DOI | MR | Zbl
[12] Satake I., “The Gauss–Bonnet theorem for $V$-manifolds”, J. Math. Soc. Japan, 9 (1957), 464–492 | DOI | MR | Zbl
[13] Schwartz M.-H., “Classes caractéristiques définies par une stratification d'une variété analytique complexe”, C. R. Acad. Sci. Paris, 260 (1965), 3262–3264 ; 3535-3537 | MR | Zbl
[14] Schwartz M.-H., Champs radiaux sur une stratification analytique, Travaux en Cours, 39, Hermann, Paris, 1991 | MR | Zbl
[15] Tamanoi H., “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava $K$-theory”, Algebr. Geom. Topol., 1 (2001), 115–141 | DOI | MR | Zbl
[16] tom Dieck T., Transformation groups, De Gruyter Stud. Math., 8, Walter de Gruyter Co., Berlin, 1987 | MR | Zbl