Threshold approximations for the resolvent of a polynomial nonnegative operator pencil
Algebra i analiz, Tome 33 (2021) no. 2, pp. 233-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_2_a9,
     author = {V. A. Sloushch and T. A. Suslina},
     title = {Threshold approximations for the resolvent of a polynomial nonnegative operator pencil},
     journal = {Algebra i analiz},
     pages = {233--274},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a9/}
}
TY  - JOUR
AU  - V. A. Sloushch
AU  - T. A. Suslina
TI  - Threshold approximations for the resolvent of a polynomial nonnegative operator pencil
JO  - Algebra i analiz
PY  - 2021
SP  - 233
EP  - 274
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_2_a9/
LA  - ru
ID  - AA_2021_33_2_a9
ER  - 
%0 Journal Article
%A V. A. Sloushch
%A T. A. Suslina
%T Threshold approximations for the resolvent of a polynomial nonnegative operator pencil
%J Algebra i analiz
%D 2021
%P 233-274
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_2_a9/
%G ru
%F AA_2021_33_2_a9
V. A. Sloushch; T. A. Suslina. Threshold approximations for the resolvent of a polynomial nonnegative operator pencil. Algebra i analiz, Tome 33 (2021) no. 2, pp. 233-274. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a9/

[1] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108

[2] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90

[3] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104

[4] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130

[5] Veniaminov N. A., “Usrednenie periodicheskikh differentsialnykh operatorov vysokogo poryadka”, Algebra i analiz, 22:5 (2010), 69–103 | MR

[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[7] Kukushkin A. A., Suslina T. A., “Usrednenie ellipticheskikh operatorov vysokogo poryadka s periodicheskimi koeffitsientami”, Algebra i analiz, 28:1 (2016), 89–149

[8] Slousch V. A., Suslina T. A., “Usrednenie ellipticheskogo operatora chetvertogo poryadka s periodicheskimi koeffitsientami pri uchete korrektorov”, Funkts. anal. i ego pril., 54:3 (2020), 94–99 | MR

[9] Slousch V. A., Suslina T. A., “Usrednenie ellipticheskogo operatora chetvertogo poryadka s periodicheskimi koeffitsientami”, Sb. materialov mezhdunar. konf. KROMSh-2020, Poliprint, Simferopol, 2020, 186–188