Steady state non-Newtonian flow in thin tube structure: equation on the graph
Algebra i analiz, Tome 33 (2021) no. 2, pp. 197-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dimension reduction for the viscous flows in thin tube structures leads to equations on the graph for the macroscopic pressure with Kirchhoff type junction conditions in the vertices. Nonlinear equations on the graph generated by the non-Newtonian rheology are treated here. The existence and uniqueness of a solution of this problem is proved. This solution describes the leading term of an asymptotic analysis of the stationary non-Newtonian fluid motion in a thin tube structure with no-slip boundary condition on the lateral boundary.
Keywords: non-Newtonian flow, strain rate dependent viscosity, asymptotic dimension reduction, quasi-Poiseuille flows, equation on the graph.
@article{AA_2021_33_2_a7,
     author = {G. Panasenko and K. Pileckas and B. Vernescu},
     title = {Steady state {non-Newtonian} flow in thin tube structure: equation on the graph},
     journal = {Algebra i analiz},
     pages = {197--214},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a7/}
}
TY  - JOUR
AU  - G. Panasenko
AU  - K. Pileckas
AU  - B. Vernescu
TI  - Steady state non-Newtonian flow in thin tube structure: equation on the graph
JO  - Algebra i analiz
PY  - 2021
SP  - 197
EP  - 214
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_2_a7/
LA  - en
ID  - AA_2021_33_2_a7
ER  - 
%0 Journal Article
%A G. Panasenko
%A K. Pileckas
%A B. Vernescu
%T Steady state non-Newtonian flow in thin tube structure: equation on the graph
%J Algebra i analiz
%D 2021
%P 197-214
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_2_a7/
%G en
%F AA_2021_33_2_a7
G. Panasenko; K. Pileckas; B. Vernescu. Steady state non-Newtonian flow in thin tube structure: equation on the graph. Algebra i analiz, Tome 33 (2021) no. 2, pp. 197-214. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a7/

[1] Blanc F., Gipouloux O., Panasenko G., Zine A. M., “Asymptotic analysis and partial asymptotic decomposition of the domain for Stokes equation in tube structure”, Math. Models Methods Appl. Sci., 9:9 (1999), 1351–1378 | DOI | MR | Zbl

[2] Bunoiu R., Gaudiello A., Leopardi A., “Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure”, J. Math. Pures Appl. (9), 123 (2019), 148–166 | DOI | MR | Zbl

[3] Juodagalvyté R., Panasenko G., Pileckas K., “Time periodic Navier–Stokes equations in a thin tube structure”, Bound. Value Probl., 2020, 28, 1–35 | MR

[4] Kozlov V., Nazarov S., Zavorokhin G., “A fractal graph model of capillary type systems”, Complex Var. Elliptic Equ., 63:7-8 (2018), 1044–1068 | DOI | MR | Zbl

[5] Panasenko G., “Asymptotic expansion of the solution of Navier–Stokes equation in a tube structure”, C. R. Acad. Sci. Paris. Sér. IIb, 326 (1998), 867–872 | DOI | MR | Zbl

[6] Panasenko G., Multi-scale modeling for structures and composites, Springer, Dordrecht, 2005 | MR

[7] Panasenko G., Pileckas K., “Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe”, Appl. Anal., 91:3 (2012), 559–574 | DOI | MR | Zbl

[8] Panasenko G., Pileckas K., “Flows in a tube structure\textup: equation on the graph”, J. Math. Phys., 55:8 (2014), 081505 | DOI | MR | Zbl

[9] Panasenko G., Pileckas K., “Periodic in time flow in thin structures: Equations on the graph”, J. Math. Anal. Appl., 490:8 (2020), 124335 | DOI | MR | Zbl

[10] Panasenko G., Pileckas K., “Asymptotic analysis of the non-steady Navier–Stokes equations in a tube structure. I. The case without boundary layer-in-time”, Nonlinear Anal., 122 (2015), 125–168 | DOI | MR | Zbl

[11] Panasenko G., Pileckas K., “Asymptotic analysis of the non-steady Navier–Stokes equations in a tube structure. II. General case”, Nonlinear Anal., 125 (2015), 582–607 | DOI | MR | Zbl

[12] Panasenko G., Pileckas K., Vernescu B., “Steady-state non-Newtonian flow in an unbounded domain with outlets at infinity”, Nonlinear Anal.: Modeling and Control (to appear)

[13] Panasenko G., Vernescu B., “Non-Newtonian flows in domains with non-compact boundaries”, Nonlinear Anal., 18 (2019), 214–229 | DOI | MR