Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_2_a7, author = {G. Panasenko and K. Pileckas and B. Vernescu}, title = {Steady state {non-Newtonian} flow in thin tube structure: equation on the graph}, journal = {Algebra i analiz}, pages = {197--214}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a7/} }
TY - JOUR AU - G. Panasenko AU - K. Pileckas AU - B. Vernescu TI - Steady state non-Newtonian flow in thin tube structure: equation on the graph JO - Algebra i analiz PY - 2021 SP - 197 EP - 214 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2021_33_2_a7/ LA - en ID - AA_2021_33_2_a7 ER -
G. Panasenko; K. Pileckas; B. Vernescu. Steady state non-Newtonian flow in thin tube structure: equation on the graph. Algebra i analiz, Tome 33 (2021) no. 2, pp. 197-214. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a7/
[1] Blanc F., Gipouloux O., Panasenko G., Zine A. M., “Asymptotic analysis and partial asymptotic decomposition of the domain for Stokes equation in tube structure”, Math. Models Methods Appl. Sci., 9:9 (1999), 1351–1378 | DOI | MR | Zbl
[2] Bunoiu R., Gaudiello A., Leopardi A., “Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure”, J. Math. Pures Appl. (9), 123 (2019), 148–166 | DOI | MR | Zbl
[3] Juodagalvyté R., Panasenko G., Pileckas K., “Time periodic Navier–Stokes equations in a thin tube structure”, Bound. Value Probl., 2020, 28, 1–35 | MR
[4] Kozlov V., Nazarov S., Zavorokhin G., “A fractal graph model of capillary type systems”, Complex Var. Elliptic Equ., 63:7-8 (2018), 1044–1068 | DOI | MR | Zbl
[5] Panasenko G., “Asymptotic expansion of the solution of Navier–Stokes equation in a tube structure”, C. R. Acad. Sci. Paris. Sér. IIb, 326 (1998), 867–872 | DOI | MR | Zbl
[6] Panasenko G., Multi-scale modeling for structures and composites, Springer, Dordrecht, 2005 | MR
[7] Panasenko G., Pileckas K., “Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe”, Appl. Anal., 91:3 (2012), 559–574 | DOI | MR | Zbl
[8] Panasenko G., Pileckas K., “Flows in a tube structure\textup: equation on the graph”, J. Math. Phys., 55:8 (2014), 081505 | DOI | MR | Zbl
[9] Panasenko G., Pileckas K., “Periodic in time flow in thin structures: Equations on the graph”, J. Math. Anal. Appl., 490:8 (2020), 124335 | DOI | MR | Zbl
[10] Panasenko G., Pileckas K., “Asymptotic analysis of the non-steady Navier–Stokes equations in a tube structure. I. The case without boundary layer-in-time”, Nonlinear Anal., 122 (2015), 125–168 | DOI | MR | Zbl
[11] Panasenko G., Pileckas K., “Asymptotic analysis of the non-steady Navier–Stokes equations in a tube structure. II. General case”, Nonlinear Anal., 125 (2015), 582–607 | DOI | MR | Zbl
[12] Panasenko G., Pileckas K., Vernescu B., “Steady-state non-Newtonian flow in an unbounded domain with outlets at infinity”, Nonlinear Anal.: Modeling and Control (to appear)
[13] Panasenko G., Vernescu B., “Non-Newtonian flows in domains with non-compact boundaries”, Nonlinear Anal., 18 (2019), 214–229 | DOI | MR