Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_2_a3, author = {L. A. Kalyakin}, title = {Asymptotics of the solution for the system of {Landau--Lifsitz} equations under saddle-node dynamical bifurcation}, journal = {Algebra i analiz}, pages = {56--81}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a3/} }
TY - JOUR AU - L. A. Kalyakin TI - Asymptotics of the solution for the system of Landau--Lifsitz equations under saddle-node dynamical bifurcation JO - Algebra i analiz PY - 2021 SP - 56 EP - 81 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2021_33_2_a3/ LA - ru ID - AA_2021_33_2_a3 ER -
L. A. Kalyakin. Asymptotics of the solution for the system of Landau--Lifsitz equations under saddle-node dynamical bifurcation. Algebra i analiz, Tome 33 (2021) no. 2, pp. 56-81. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a3/
[1] Gurevich A. V., Melkov G. A., Magnitnye kolebaniya i volny, Nauka, M., 1994
[2] Kalyakin L. A., Shamsutdinov M. A., “Adiabaticheskie priblizheniya dlya uravnenii Landau–Lifshitsa”, Tr. in-ta mat. i mekh. UrO RAN, 13, no. 2, 2007, 104–119
[3] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR
[4] Babich V. M., Kirpichnikova N. Ya., Metod pogranichnogo sloya v zadachakh difraktsii, Izd-vo LGU, L., 1974 | MR
[5] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[6] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989
[7] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990
[8] Berglund N., Dynamic bifurcations: hysteresis, scaling laws and feedback control, 1999, arXiv: chao-dyn/9912008v1 | MR
[9] Kiselev O. M., “Hard loss of stability in Painleve-$2$ equation”, J. Nonlinear Math. Phys., 8:1 (2001), 1–31 | DOI | MR
[10] Diminnie D. C., Haberman R., “Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant”, Phys. D, 162 (2002), 34–52 | DOI | MR | Zbl
[11] Suleimanov B. I., “Nekotorye tipichnye osobennosti dvizheniya s tormozheniem v sluchae plavnoi neodnorodnosti”, Dokl. RAN, 407:4 (2006), 460–462 | MR | Zbl
[12] Kalyakin L. A., “Asimptotika resheniya differentsialnogo uravneniya pri dinamicheskoi bifurkatsii tipa sedlo-uzel”, Zh. vychisl. mat. i mat. fiz., 59:9 (2019), 59–74
[13] Butuzov V. F., “O kontrastnykh strukturakh s mnogozonnym vnutrennim sloem”, Model. i analiz inform. sistem, 24:3 (2017), 288–308 | MR
[14] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR
[15] Lebovitz N. R., Schaar R. J., “Exchange of stabilities in autonomous systems”, Stud. Appl. Math., 54:3 (1975), 229–260 | DOI | MR | Zbl
[16] Lebovitz N. R., Schaar R. J., “Exchange of stabilities in autonomous systems-II. Vertical bifurcation”, Stud. Appl. Math., 56 (1977), 1–50 | DOI | MR | Zbl
[17] Egorov A. I., Uravneniya Rikkati, Fizmatlit, M., 2001
[18] Orlov V. N., “Kriterii suschestvovaniya podvizhnykh osobykh tochek reshenii differentsialnogo uravneniya Rikkati”, Vestnik SamGU . Estestvennonauch. ser., 46:6/1 (2006), 64–69 | Zbl
[19] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatlit, M., 1959
[20] Kuznetsov A. N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funkts. anal. i ego pril., 23:4 (1989), 63–74 | MR | Zbl
[21] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo Moskov. un-ta, M., 1996 | MR
[22] Neishtadt A. I., “O zatyagivanii poteri ustoichivosti pri dinamicheskikh bifurkatsiyakh”, Differ. uravn., 24:2 (1988), 226–233 | MR
[23] Baer S. M., Erneux T., Rinzel J., “The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance”, SIAM J. Appl. Math., 49:1 (1989), 55–71 | DOI | MR | Zbl
[24] Borich M. A., Bunkov Yu. M., Kurkin M. I., Tankeev A. P., “Yadernaya magnitnaya relaksatsiya, navedennaya relaksatsiei elektronnykh spinov”, Pisma v ZhETF, 105:1 (2017), 23–27
[25] Kalyakin L. A., “Analysis of a mathematical model for nuclear spins in an antiferromagnet”, Russ. J. Nonlinear Dyn., 14:2 (2018), 217–234 | MR | Zbl