Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_2_a10, author = {V. P. Smyshlyaev and I. V. Kamotski}, title = {Searchlight asymptotics for high-frequency scattering by boundary inflection}, journal = {Algebra i analiz}, pages = {275--297}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a10/} }
TY - JOUR AU - V. P. Smyshlyaev AU - I. V. Kamotski TI - Searchlight asymptotics for high-frequency scattering by boundary inflection JO - Algebra i analiz PY - 2021 SP - 275 EP - 297 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2021_33_2_a10/ LA - en ID - AA_2021_33_2_a10 ER -
V. P. Smyshlyaev; I. V. Kamotski. Searchlight asymptotics for high-frequency scattering by boundary inflection. Algebra i analiz, Tome 33 (2021) no. 2, pp. 275-297. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a10/
[1] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972
[2] Babich V. M., Kirpichnikova N. Ya., Metod pogranichnogo sloya v zadachakh difraktsii, Izd-vo LGU, L., 1974 | MR
[3] Babich V. M., Smyshlyaev V. P., “O zadache rasseyaniya dlya uravneniya Shredingera v sluchae lineinogo po vremeni i koordinate potentsiala. I. Asimptotika v zone teni”, Zap. nauch. semin. LOMI, 140, 1984, 6–17 | Zbl
[4] Babich V. M., Smyshlyaev V. P., “O zadache rasseyaniya dlya uravneniya Shredingera v sluchae lineinogo po vremeni i koordinate potentsiala. II. Korrektnost, gladkost, povedenie resheniya na beskonechnosti”, Zap. nauch. semin. LOMI, 148, 1985, 13–29 | Zbl
[5] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1966
[6] Buslaev V. S., Matveev V. B., “Volnovye operatory dlya uravneniya Shredingera s medlenno ubyvayuschim potentsialom”, Teor. mat. fiz., 2:3 (1970), 367–376 | MR
[7] Kazakov A. Ya., ““Razdelenie peremennykh” v modelnykh zadachakh teorii diffraktsii. Formalnaya skhema”, Zap. nauch. semin. POMI, 471, 2018, 124–139
[8] Popov M. M., “K zadache o volnakh shepchuschei galerei v okrestnosti prostogo nulya effektivnoi krivizny granitsy”, Zap. nauch. semin. LOMI, 62, 1976, 197–206 | Zbl
[9] Popov M. M., “Korrektnost zadachi o volnakh shepchuschei galerei v okrestnosti tochek raspryamleniya granitsy”, Zap. nauch. semin. LOMI, 89, 1979, 261–269
[10] Popov M. M., “Shepchuschaya galereya v okrestnosti tochki peregiba granitsy. Asimptotika volnovogo polya pri $t\to\infty$”, Zap. nauch. semin. LOMI, 140, 1984, 151–166 | Zbl
[11] Popov M. M., Krasavin V. G., “Diagramma napravlennosti izlucheniya v zadache s tochkoi peregiba granitsy”, Zap. nauch. semin. LOMI, 140, 1984, 167–173 | Zbl
[12] Popov M. M., Pshenchik I., “Chislennoe reshenie zadachi o volnakh shepchuschei galerei v okrestnosti prostogo nulya effektivnoi krivizny granitsy”, Zap. nauch. semin. LOMI, 62, 1976, 207–219 | Zbl
[13] Smirnov A. B., Fedotov A. A., “Adiabaticheskaya evolyutsiya, porozhdennaya operatorom Shredingera s diskretnym i nepreryvnym spektrami”, Funkts. anal. i ego pril., 50:1 (2016), 90–93 | MR | Zbl
[14] Smyshlyaev V. P., “O sosredotochennosti reshenii vblizi predelnogo lucha v okrestnosti tochki peregiba granitsy”, Zap. nauch. semin. LOMI, 173, 1988, 155–158 | Zbl
[15] Yafaev D. R., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, Izd-vo SPbGU, SPb., 1994
[16] Hewett D. P., Ockendon J. R., Smyshlyaev V. P., “Contour integral solutions of the parabolic wave equation”, Wave Motion, 84 (2019), 90–109 | DOI | MR | Zbl
[17] Kato T., Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, 2nd ed., Springer-Verlag, Berlin, 1976 | MR | Zbl
[18] Kazakov A. Ya., “Special function related to the concave-convex boundary problems of the diffraction theory”, J. Phys. A, 36:14 (2003), 4127–4141 | DOI | MR | Zbl
[19] Nakamura G., Shibata Y., Tanuma K., “Whispering gallery waves in a neighborhood of a higher order zero of the curvature of the boundary”, Publ. Res. Inst. Math. Sci., 25:4 (1989), 605–629 | DOI | MR | Zbl
[20] Ockendon J. R., Tew R. H., “Thin-layer solutions of the Helmholtz and related equations”, SIAM Rev., 54 (2012), 3–51 | DOI | MR | Zbl
[21] Ockendon J. R., Tew R. H., “Thin-layer solutions of the Helmholtz equation”, Eur. J. Appl. Math., 2020 (published online 6 October 2020) | MR
[22] Olver P. J., Applications of Lie groups to partial differential equations, Grad. Texts in Math., 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR
[23] Sulem C., Sulem P.-L., The nonlinear Schrödinger equation. Self-focusing and wave collapse, Appl. Math. Sci., 139, Springer, New York, 1999 | MR | Zbl
[24] Talanov V. I., “Focusing of light in cubic media”, J. Experimental Theor. Phys. Letters, 11 (1970), 199–201
[25] Tao T., The pseudoconformal and conformal transformations, , 2013 https://terrytao.wordpress.com/2013/02/14/the-pseudoconformal-and-conformal-transformations/