Searchlight asymptotics for high-frequency scattering by boundary inflection
Algebra i analiz, Tome 33 (2021) no. 2, pp. 275-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to an inner problem for a whispering gallery high-frequency asymptotic mode's scattering by a boundary inflection. The related boundary-value problem for a Schrödinger equation on a half-line with a potential linear in both space and time appears fundamental for describing transitions from modal to scattered asymptotic patterns, and despite having been intensively studied over several decades remains largely unsolved. The solution past the inflection point is shown to have a “searchlight” asymptotics corresponding to a beam concentrated near the limit ray. Certain decay and smoothness properties of the related searchlight amplitude are established. Further interpretations of the above result are also discussed: the existence of the associated generalised wave operator, and of a version of a unitary scattering operator connecting the modal and scattered asymptotic regimes.
Keywords: diffraction, whispering gallery, boundary inflection, wave operator.
@article{AA_2021_33_2_a10,
     author = {V. P. Smyshlyaev and I. V. Kamotski},
     title = {Searchlight asymptotics for high-frequency scattering by boundary inflection},
     journal = {Algebra i analiz},
     pages = {275--297},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a10/}
}
TY  - JOUR
AU  - V. P. Smyshlyaev
AU  - I. V. Kamotski
TI  - Searchlight asymptotics for high-frequency scattering by boundary inflection
JO  - Algebra i analiz
PY  - 2021
SP  - 275
EP  - 297
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_2_a10/
LA  - en
ID  - AA_2021_33_2_a10
ER  - 
%0 Journal Article
%A V. P. Smyshlyaev
%A I. V. Kamotski
%T Searchlight asymptotics for high-frequency scattering by boundary inflection
%J Algebra i analiz
%D 2021
%P 275-297
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_2_a10/
%G en
%F AA_2021_33_2_a10
V. P. Smyshlyaev; I. V. Kamotski. Searchlight asymptotics for high-frequency scattering by boundary inflection. Algebra i analiz, Tome 33 (2021) no. 2, pp. 275-297. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a10/

[1] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972

[2] Babich V. M., Kirpichnikova N. Ya., Metod pogranichnogo sloya v zadachakh difraktsii, Izd-vo LGU, L., 1974 | MR

[3] Babich V. M., Smyshlyaev V. P., “O zadache rasseyaniya dlya uravneniya Shredingera v sluchae lineinogo po vremeni i koordinate potentsiala. I. Asimptotika v zone teni”, Zap. nauch. semin. LOMI, 140, 1984, 6–17 | Zbl

[4] Babich V. M., Smyshlyaev V. P., “O zadache rasseyaniya dlya uravneniya Shredingera v sluchae lineinogo po vremeni i koordinate potentsiala. II. Korrektnost, gladkost, povedenie resheniya na beskonechnosti”, Zap. nauch. semin. LOMI, 148, 1985, 13–29 | Zbl

[5] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1966

[6] Buslaev V. S., Matveev V. B., “Volnovye operatory dlya uravneniya Shredingera s medlenno ubyvayuschim potentsialom”, Teor. mat. fiz., 2:3 (1970), 367–376 | MR

[7] Kazakov A. Ya., ““Razdelenie peremennykh” v modelnykh zadachakh teorii diffraktsii. Formalnaya skhema”, Zap. nauch. semin. POMI, 471, 2018, 124–139

[8] Popov M. M., “K zadache o volnakh shepchuschei galerei v okrestnosti prostogo nulya effektivnoi krivizny granitsy”, Zap. nauch. semin. LOMI, 62, 1976, 197–206 | Zbl

[9] Popov M. M., “Korrektnost zadachi o volnakh shepchuschei galerei v okrestnosti tochek raspryamleniya granitsy”, Zap. nauch. semin. LOMI, 89, 1979, 261–269

[10] Popov M. M., “Shepchuschaya galereya v okrestnosti tochki peregiba granitsy. Asimptotika volnovogo polya pri $t\to\infty$”, Zap. nauch. semin. LOMI, 140, 1984, 151–166 | Zbl

[11] Popov M. M., Krasavin V. G., “Diagramma napravlennosti izlucheniya v zadache s tochkoi peregiba granitsy”, Zap. nauch. semin. LOMI, 140, 1984, 167–173 | Zbl

[12] Popov M. M., Pshenchik I., “Chislennoe reshenie zadachi o volnakh shepchuschei galerei v okrestnosti prostogo nulya effektivnoi krivizny granitsy”, Zap. nauch. semin. LOMI, 62, 1976, 207–219 | Zbl

[13] Smirnov A. B., Fedotov A. A., “Adiabaticheskaya evolyutsiya, porozhdennaya operatorom Shredingera s diskretnym i nepreryvnym spektrami”, Funkts. anal. i ego pril., 50:1 (2016), 90–93 | MR | Zbl

[14] Smyshlyaev V. P., “O sosredotochennosti reshenii vblizi predelnogo lucha v okrestnosti tochki peregiba granitsy”, Zap. nauch. semin. LOMI, 173, 1988, 155–158 | Zbl

[15] Yafaev D. R., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, Izd-vo SPbGU, SPb., 1994

[16] Hewett D. P., Ockendon J. R., Smyshlyaev V. P., “Contour integral solutions of the parabolic wave equation”, Wave Motion, 84 (2019), 90–109 | DOI | MR | Zbl

[17] Kato T., Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, 2nd ed., Springer-Verlag, Berlin, 1976 | MR | Zbl

[18] Kazakov A. Ya., “Special function related to the concave-convex boundary problems of the diffraction theory”, J. Phys. A, 36:14 (2003), 4127–4141 | DOI | MR | Zbl

[19] Nakamura G., Shibata Y., Tanuma K., “Whispering gallery waves in a neighborhood of a higher order zero of the curvature of the boundary”, Publ. Res. Inst. Math. Sci., 25:4 (1989), 605–629 | DOI | MR | Zbl

[20] Ockendon J. R., Tew R. H., “Thin-layer solutions of the Helmholtz and related equations”, SIAM Rev., 54 (2012), 3–51 | DOI | MR | Zbl

[21] Ockendon J. R., Tew R. H., “Thin-layer solutions of the Helmholtz equation”, Eur. J. Appl. Math., 2020 (published online 6 October 2020) | MR

[22] Olver P. J., Applications of Lie groups to partial differential equations, Grad. Texts in Math., 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR

[23] Sulem C., Sulem P.-L., The nonlinear Schrödinger equation. Self-focusing and wave collapse, Appl. Math. Sci., 139, Springer, New York, 1999 | MR | Zbl

[24] Talanov V. I., “Focusing of light in cubic media”, J. Experimental Theor. Phys. Letters, 11 (1970), 199–201

[25] Tao T., The pseudoconformal and conformal transformations, , 2013 https://terrytao.wordpress.com/2013/02/14/the-pseudoconformal-and-conformal-transformations/