Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_1_a8, author = {N. D. Filonov}, title = {Schr\" odinger operator in a cylinder with a decreasing potential}, journal = {Algebra i analiz}, pages = {213--245}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a8/} }
N. D. Filonov. Schr\" odinger operator in a cylinder with a decreasing potential. Algebra i analiz, Tome 33 (2021) no. 1, pp. 213-245. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a8/
[1] Krejčiřik D., de Aldecoa R. T., “The nature of the essential spectrum in curved quantum waveguide”, J. Phys. A, 37 (2004), 5449–5466 | DOI | MR | Zbl
[2] Melgaard M., “Scattering properties for a pair of Schrödinger type on cylindrical domains”, Cent. Eur. J. Math., 5:1 (2007), 134–153 | DOI | MR | Zbl
[3] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., 1950 | MR
[4] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya rasseyaniya; т. 4, Анализ операторов, Мир, М., 1982
[5] Yafaev D. R., Matematicheskaya teoriya rasseyaniya, SPbGU, SPb., 1994
[6] Yafaev D. R., Mathematical scattering theory. Analytic theory, Math. Surveys Monogr., 158, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl