Schr\" odinger operator in a cylinder with a decreasing potential
Algebra i analiz, Tome 33 (2021) no. 1, pp. 213-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_1_a8,
     author = {N. D. Filonov},
     title = {Schr\" odinger operator in a cylinder with a decreasing potential},
     journal = {Algebra i analiz},
     pages = {213--245},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a8/}
}
TY  - JOUR
AU  - N. D. Filonov
TI  - Schr\" odinger operator in a cylinder with a decreasing potential
JO  - Algebra i analiz
PY  - 2021
SP  - 213
EP  - 245
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_1_a8/
LA  - ru
ID  - AA_2021_33_1_a8
ER  - 
%0 Journal Article
%A N. D. Filonov
%T Schr\" odinger operator in a cylinder with a decreasing potential
%J Algebra i analiz
%D 2021
%P 213-245
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_1_a8/
%G ru
%F AA_2021_33_1_a8
N. D. Filonov. Schr\" odinger operator in a cylinder with a decreasing potential. Algebra i analiz, Tome 33 (2021) no. 1, pp. 213-245. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a8/

[1] Krejčiřik D., de Aldecoa R. T., “The nature of the essential spectrum in curved quantum waveguide”, J. Phys. A, 37 (2004), 5449–5466 | DOI | MR | Zbl

[2] Melgaard M., “Scattering properties for a pair of Schrödinger type on cylindrical domains”, Cent. Eur. J. Math., 5:1 (2007), 134–153 | DOI | MR | Zbl

[3] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., 1950 | MR

[4] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya rasseyaniya; т. 4, Анализ операторов, Мир, М., 1982

[5] Yafaev D. R., Matematicheskaya teoriya rasseyaniya, SPbGU, SPb., 1994

[6] Yafaev D. R., Mathematical scattering theory. Analytic theory, Math. Surveys Monogr., 158, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl