On the solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian
Algebra i analiz, Tome 33 (2021) no. 1, pp. 194-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_1_a7,
     author = {N. S. Ustinov},
     title = {On the solvability of a critical semilinear problem with the spectral {Neumann} fractional {Laplacian}},
     journal = {Algebra i analiz},
     pages = {194--212},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a7/}
}
TY  - JOUR
AU  - N. S. Ustinov
TI  - On the solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian
JO  - Algebra i analiz
PY  - 2021
SP  - 194
EP  - 212
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_1_a7/
LA  - ru
ID  - AA_2021_33_1_a7
ER  - 
%0 Journal Article
%A N. S. Ustinov
%T On the solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian
%J Algebra i analiz
%D 2021
%P 194-212
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_1_a7/
%G ru
%F AA_2021_33_1_a7
N. S. Ustinov. On the solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian. Algebra i analiz, Tome 33 (2021) no. 1, pp. 194-212. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a7/

[1] Adimurthi, Mancini G., “The Neumann problem for elliptic equations with critical nonlinearity”, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991, 9–25 | MR | Zbl

[2] Aubin T., “Problemes isopérimétriques et espaces de Sobolev”, J. Differential Geom., 11:4 (1976), 573–598 | DOI | MR | Zbl

[3] Caffarelli L., Silvestre L., “An extension problem related to the fractional Laplacian”, Comm. Partial Differential Equations, 32:7–9 (2007), 1245–1260 | DOI | MR | Zbl

[4] Cotsiolis A., Tavoularis N. K., “Best constants for Sobolev inequalities for higher order fractional derivatives”, J. Math. Anal. Appl., 295:1 (2004), 225–236 | DOI | MR | Zbl

[5] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Math., 1150, Springer-Verlag, Berlin, 1985 | DOI | MR | Zbl

[6] Lions P. L., “The concentration-compactness principle in the calculus of variations. The limit case. I; II”, Rev. Mat. Iberoam., 1 (1985), 45–121 ; 145–201 | DOI | MR | Zbl | Zbl

[7] Musina R., Nazarov A. I., “On fractional Laplacians”, Comm. Partial Differential Equations, 39:9 (2014), 1780–1790 | DOI | MR | Zbl

[8] Musina R., Nazarov A. I., “On the Sobolev and Hardy constants for the fractional Navier Laplacian”, Nonlin. Anal., 121 (2015), 123–129 | DOI | MR | Zbl

[9] Musina R., Nazarov A. I., “Sobolev inequalities for fractional Neumann Laplacians on half spaces”, Adv. Calc. Var. | DOI | MR

[10] Stinga P. R., Torrea J. L., “Extension problem and Harnack's inequality for some fractional operators”, Comm. Partial Differential Equations, 35:11 (2010), 2092–2122 | DOI | MR | Zbl

[11] Talenti G., “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl. (4), 110:1 (1976), 353–372 | DOI | MR | Zbl

[12] Ustinov N., “The effect of curvature in fractional Hardy-Sobolev inequality involving the spectral Dirichlet Laplacian”, Trans. Amer. Math. Soc., 373 (2020), 7785–7815 | DOI | MR | Zbl

[13] Wang X. J., “Neumann problems of semilinear elliptic equations involving critical Sobolev exponents”, J. Differential Equations, 93:2 (1991), 283–310 | DOI | MR | Zbl

[14] Demyanov A. V., Nazarov A. I., “O suschestvovanii ekstremalnoi funktsii v teoremakh vlozheniya Soboleva s predelnym pokazatelem”, Algebra i analiz, 17:5 (2005), 105–140

[15] Ilin V. P., “Nekotorye integralnye neravenstva i ikh primeneniya v teorii differentsiruemykh funktsii mnogikh peremennykh”, Mat. sb., 54:3 (1961), 331–380 | Zbl

[16] Slobodetskii L. N., “Obobschennye prostranstva S. L. Soboleva i ikh prilozhenie k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. LGPI im. A.I. Gertsena, 197 (1958), 54–112

[17] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[18] Evans L. K., Metody slaboi skhodimosti dlya nelineinykh uravnenii s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2006