Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_1_a5, author = {B. M. Makarov and A. N. Podkorytov}, title = {On the exactness of conditions in the {Federer} theorem}, journal = {Algebra i analiz}, pages = {119--135}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a5/} }
B. M. Makarov; A. N. Podkorytov. On the exactness of conditions in the Federer theorem. Algebra i analiz, Tome 33 (2021) no. 1, pp. 119-135. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a5/
[1] Federer H., “Two theorems in geometric measure theory”, Bull. Amer. Math. Soc., 72 (1966), 719 | DOI | MR | Zbl
[2] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987
[3] Norton A., “A critical set with nonnull image has large Hausdorff dimension”, Trans. Amer. Math. Soc., 296:1 (1986), 367–376 | DOI | MR | Zbl
[4] Bates S. M., “On the image size of singular maps. I”, Proc. Amer. Math. Soc., 114:1 (1992), 699–705 | DOI | MR | Zbl
[5] Bates S. M., “Toward a Precise Smoothness Hypothesis in Sard Theorem”, Proc. Amer. Math. Soc., 117:1 (1993), 279–283 | MR | Zbl
[6] Moreira C. G., “Hausdorff measures and the Morse–Sard theorem”, Publ. Math., 45 (2001), 149–162 | DOI | MR | Zbl
[7] Makarov B. M., Podkorytov A. N., Gladkie funktsii i otobrazheniya, MTsNMO, M., 2020 | MR
[8] Pesin Ya. B., Teoriya razmernosti i dinamicheskie sistemy: sovremennyi vzglyad i prilozheniya, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002 | MR