Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_1_a3, author = {S. V. Ivanov}, title = {Distance difference functions on nonconvex boundaries of {Riemannian} manifolds}, journal = {Algebra i analiz}, pages = {81--92}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a3/} }
S. V. Ivanov. Distance difference functions on nonconvex boundaries of Riemannian manifolds. Algebra i analiz, Tome 33 (2021) no. 1, pp. 81-92. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a3/
[1] Alexander R., Alexander S., “Geodesics in Riemannian manifolds-with-boundary”, Indiana Univ. Math. J., 30:4 (1981), 481–488 | DOI | MR | Zbl
[2] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[3] de Hoop M. V., Saksala T., “Inverse problem of Travel time difference functions on compact Riemannian manifold with boundary”, J. Geom. Anal., 29:4 (2019), 3308–3327 | DOI | MR | Zbl
[4] Ivanov S., “Distance difference representations of Riemannian manifolds”, Geom. Dedicata, 207 (2020), 167–192 | DOI | MR | Zbl
[5] Katchalov A., Kurylev Y., Lassas M., Inverse boundary spectral problems, Chapman Hall/CRC Monogr. Surveys Pure Appl. Math., 123, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | Zbl
[6] Kurylev Y., “Multidimensional Gel'fand inverse problem and boundary distance map”, Inverse Problems Related with Geometry, Ibaraki Univ. Press, Mito, 1997, 1–15
[7] Kurylev Y., Lassas M., Uhlmann G., “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations”, Invent. Math., 212:3 (2018), 781–857 | DOI | MR | Zbl
[8] Lassas M., Saksala T., “Determination of a Riemannian manifold from the distance difference functions”, Asian J. Math., 23:2 (2019), 173–200 | DOI | MR | Zbl
[9] Myers S. B., Steenrod N. E., “The group of isometries of a Riemannian manifold”, Ann. of Math. (2), 40:2 (1939), 400–416 | DOI | MR
[10] Petersen P., Riemannian geometry, Graduate Texts in Math., 171, 2nd ed., Springer, New York, 2006 | MR | Zbl