Distance difference functions on nonconvex boundaries of Riemannian manifolds
Algebra i analiz, Tome 33 (2021) no. 1, pp. 81-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_1_a3,
     author = {S. V. Ivanov},
     title = {Distance difference functions on nonconvex boundaries of {Riemannian} manifolds},
     journal = {Algebra i analiz},
     pages = {81--92},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a3/}
}
TY  - JOUR
AU  - S. V. Ivanov
TI  - Distance difference functions on nonconvex boundaries of Riemannian manifolds
JO  - Algebra i analiz
PY  - 2021
SP  - 81
EP  - 92
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_1_a3/
LA  - ru
ID  - AA_2021_33_1_a3
ER  - 
%0 Journal Article
%A S. V. Ivanov
%T Distance difference functions on nonconvex boundaries of Riemannian manifolds
%J Algebra i analiz
%D 2021
%P 81-92
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_1_a3/
%G ru
%F AA_2021_33_1_a3
S. V. Ivanov. Distance difference functions on nonconvex boundaries of Riemannian manifolds. Algebra i analiz, Tome 33 (2021) no. 1, pp. 81-92. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a3/

[1] Alexander R., Alexander S., “Geodesics in Riemannian manifolds-with-boundary”, Indiana Univ. Math. J., 30:4 (1981), 481–488 | DOI | MR | Zbl

[2] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[3] de Hoop M. V., Saksala T., “Inverse problem of Travel time difference functions on compact Riemannian manifold with boundary”, J. Geom. Anal., 29:4 (2019), 3308–3327 | DOI | MR | Zbl

[4] Ivanov S., “Distance difference representations of Riemannian manifolds”, Geom. Dedicata, 207 (2020), 167–192 | DOI | MR | Zbl

[5] Katchalov A., Kurylev Y., Lassas M., Inverse boundary spectral problems, Chapman Hall/CRC Monogr. Surveys Pure Appl. Math., 123, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | Zbl

[6] Kurylev Y., “Multidimensional Gel'fand inverse problem and boundary distance map”, Inverse Problems Related with Geometry, Ibaraki Univ. Press, Mito, 1997, 1–15

[7] Kurylev Y., Lassas M., Uhlmann G., “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations”, Invent. Math., 212:3 (2018), 781–857 | DOI | MR | Zbl

[8] Lassas M., Saksala T., “Determination of a Riemannian manifold from the distance difference functions”, Asian J. Math., 23:2 (2019), 173–200 | DOI | MR | Zbl

[9] Myers S. B., Steenrod N. E., “The group of isometries of a Riemannian manifold”, Ann. of Math. (2), 40:2 (1939), 400–416 | DOI | MR

[10] Petersen P., Riemannian geometry, Graduate Texts in Math., 171, 2nd ed., Springer, New York, 2006 | MR | Zbl