Symmetries of double ratios and an equation for M\"obius structures
Algebra i analiz, Tome 33 (2021) no. 1, pp. 67-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_1_a2,
     author = {S. V. Buyalo},
     title = {Symmetries of double ratios and an equation for {M\"obius} structures},
     journal = {Algebra i analiz},
     pages = {67--80},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a2/}
}
TY  - JOUR
AU  - S. V. Buyalo
TI  - Symmetries of double ratios and an equation for M\"obius structures
JO  - Algebra i analiz
PY  - 2021
SP  - 67
EP  - 80
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_1_a2/
LA  - ru
ID  - AA_2021_33_1_a2
ER  - 
%0 Journal Article
%A S. V. Buyalo
%T Symmetries of double ratios and an equation for M\"obius structures
%J Algebra i analiz
%D 2021
%P 67-80
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_1_a2/
%G ru
%F AA_2021_33_1_a2
S. V. Buyalo. Symmetries of double ratios and an equation for M\"obius structures. Algebra i analiz, Tome 33 (2021) no. 1, pp. 67-80. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a2/

[1] Buyalo S., “Mebiusovy i submebiusovy struktury”, Algebra i analiz, 28:5 (2016), 1–20

[2] Hamermesh M., Group theory and its application to physical problems, Addison-Wesley Ser. Phys., Addison-Wesley Publ. Co., Inc., Reading, 1962 | MR | Zbl

[3] Incerti-Medici M., Geometric structure of Möbius spaces, 2017, arXiv: 1706.10166v1 [math.MG]