Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_6_a0, author = {F. L. Bakharev and S. A. Nazarov}, title = {Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides}, journal = {Algebra i analiz}, pages = {1--23}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_6_a0/} }
TY - JOUR AU - F. L. Bakharev AU - S. A. Nazarov TI - Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides JO - Algebra i analiz PY - 2020 SP - 1 EP - 23 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2020_32_6_a0/ LA - ru ID - AA_2020_32_6_a0 ER -
%0 Journal Article %A F. L. Bakharev %A S. A. Nazarov %T Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides %J Algebra i analiz %D 2020 %P 1-23 %V 32 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2020_32_6_a0/ %G ru %F AA_2020_32_6_a0
F. L. Bakharev; S. A. Nazarov. Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides. Algebra i analiz, Tome 32 (2020) no. 6, pp. 1-23. http://geodesic.mathdoc.fr/item/AA_2020_32_6_a0/
[1] Grieser D., “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl
[2] Molchanov S., Vainberg B., “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl
[3] Exner P., Post O., “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl
[4] Kuchment P., Zeng H., “Convergence of spectra of mesoscopic systems collapsing onto a graph”, J. Math. Anal. Appl., 258:2 (2001), 671–700 | DOI | MR | Zbl
[5] Pankrashkin K., “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925 | DOI | MR | Zbl
[6] Nazarov S. A., “Ogranichennye resheniya v T-obraznom volnovode i spektralnye svoistva lestnitsy Dirikhle”, Zh. vychisl. mat. i mat. fiz., 54:8 (2014), 1299–1318 | Zbl
[7] Nazarov S. A., Ruotsalainen K., Uusitalo P., “Asymptotics of the spectrum of the Dirichlet laplacian on a thin carbon nano-structure”, Comptes Rendus–Mecanique, 343:5–6 (2015), 360–364 | DOI
[8] Nazarov S. A., “Spektr pryamougolnykh reshetok kvantovykh volnovodov”, Izv. RAN. Ser. mat., 81:1 (2017), 31–92 | MR | Zbl
[9] Bakharev F. L., Matveenko S. G., Nazarov S. A., “Diskretnyi spektr krestoobraznykh volnovodov”, Algebra i analiz, 28:2 (2016), 58–71 | MR
[10] Nazarov S. A., “Raznoobraznye proyavleniya anomalii Vuda v lokalno iskrivlennykh kvantovykh volnovodakh”, Zh. vychisl. mat. i mat. fiz., 58:11 (2018), 1911–1930
[11] Nazarov S. A., “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funkts. anal. i ego pril., 40:2 (2006), 20–32 | MR | Zbl
[12] Evans D. V., Levitin M., Vassiliev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[13] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980
[14] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Second ed., Acad. Press, Inc., New York, 1980 | MR | Zbl
[15] Avishai Y., Bessis D., Giraud B. G., Mantica G., “Quantum bound states in open geometries”, Phys. Rev. B, 44:15 (1991), 8028–8034 | DOI
[16] Dauge M., Lafranche Y., Raymond N., “Quantum waveguides with corners”, Congres Nat. Math. Appl. Industr., ESAIM Proc., 35, EDP Sci., Les Ulis, 2011, 14–45 | DOI | MR
[17] Dauge M., Raymond N., “Plane waveguides with corners in the small angle limit”, J. Math. Phys., 53 (2012), 123529 | DOI | MR | Zbl
[18] Nazarov S. A., Shanin A. V., “Trapped modes in angular joints of 2D waveguides”, Appl. Anal., 93:3 (2014), 572–582 | DOI | MR | Zbl
[19] Bakharev F., Matveenko S., Nazarov S., “Examples of plentiful discrete spectra in infinite spatial cruciform quantum waveguides”, Z. Anal. Anwend., 36:3 (2017), 329–341 | MR | Zbl
[20] Exner P., Kovarik H., Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015 | DOI | MR
[21] Nazarov S. A., Ruotsalainen K., Uusitalo P., “Multifarious transmission conditions in the graph models of carbon nano-structures”, Materials Phys. Mech., 29:2 (2016), 107–115
[22] Nazarov S. A., “Usloviya sopryazheniya v odnomernoi modeli pryamougolnoi reshetki tonkikh kvantovykh volnovodov”, Probl. mat. anal., 87 (2016), 153–173
[23] Pauling L., “The diamagnetic anisotropy of aromatic molecules”, J. Chem. Phys., 4:10 (1936), 673–677 | DOI
[24] Kato T., Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Second ed., Springer-Verlag, Berlin–New York, 1976 | MR | Zbl
[25] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. I, Operator Theory: Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000 ; v. II, Operator Theory: Adv. Appl., 112 | MR | Zbl | Zbl
[26] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | Zbl
[27] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, AN SSSR. Vychisl. Tsentr, M., 1983 | MR
[28] Quarteroni A., Valli A., Domain decomposition methods for partial differential equations, Numerical Math. Sci. Comput., Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York, 1999 | MR
[29] Lions J-L, Magenes E., Non-homogeneous boundary value problems and applications, v. I, Grundlehren Math. Wiss., 181, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl
[30] Nazarov S. A., Plamenevskii B. A., Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expos. Math., 13, Walter be Gruyter, Berlin, 1994 | MR
[31] Nazarov S. A., “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teor. i mat. fiz., 167:2 (2011), 239–263 | Zbl