A cell structure of the space of branched coverings of the two-dimensional sphere
Algebra i analiz, Tome 32 (2020) no. 5, pp. 86-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2020_32_5_a3,
     author = {V. I. Zvonilov and S. Yu. Orevkov},
     title = {A cell structure of the space of branched coverings of the two-dimensional sphere},
     journal = {Algebra i analiz},
     pages = {86--113},
     publisher = {mathdoc},
     volume = {32},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_5_a3/}
}
TY  - JOUR
AU  - V. I. Zvonilov
AU  - S. Yu. Orevkov
TI  - A cell structure of the space of branched coverings of the two-dimensional sphere
JO  - Algebra i analiz
PY  - 2020
SP  - 86
EP  - 113
VL  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_5_a3/
LA  - ru
ID  - AA_2020_32_5_a3
ER  - 
%0 Journal Article
%A V. I. Zvonilov
%A S. Yu. Orevkov
%T A cell structure of the space of branched coverings of the two-dimensional sphere
%J Algebra i analiz
%D 2020
%P 86-113
%V 32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_5_a3/
%G ru
%F AA_2020_32_5_a3
V. I. Zvonilov; S. Yu. Orevkov. A cell structure of the space of branched coverings of the two-dimensional sphere. Algebra i analiz, Tome 32 (2020) no. 5, pp. 86-113. http://geodesic.mathdoc.fr/item/AA_2020_32_5_a3/

[1] Zvonilov V. I., Orevkov S. Yu., “Kompaktifikatsiya prostranstva razvetvlennykh nakrytii dvumernoi sfery”, Tr. Mat. in-ta RAN, 298, 2017, 127–138 | MR | Zbl

[2] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[3] Orevkov S. Yu., “Riemann existence theorem and construction of real algebraic curves”, Ann. Fac. Sci. Toulouse Math. (6), 12:4 (2003), 517–531 | DOI | MR | Zbl

[4] Degtyarev A., Topology of algebraic curves. An approach via dessins d'enfants, De Gruyter Stud. Math., 44, Walter de Gruyter Co., Berlin, 2012 | MR

[5] Diaz S., Edidin D., “Towards the homology of Hurwitz spaces”, J. Differential Geom., 43:1 (1996), 66–98 | DOI | MR | Zbl

[6] Natanzon S., Turaev V., “A compactification of the Hurwitz space”, Topology, 38:4 (1999), 889–914 | DOI | MR | Zbl

[7] Dimca A., Dimiev S., “On analytic coverings of weighted projective spaces”, Bull. London Math. Soc., 17:3 (1985), 234–238 | DOI | MR | Zbl

[8] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii, Nauka, M., 1977 | MR

[9] Viro O. Ya., Fuks D. B., “Gomologii i kogomologii”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napravleniya, 24, 1988, 123–240 | Zbl

[10] Degtyarev A., Itenberg I., Kharlamov V., “On deformation types of real elliptic surfaces”, Amer. J. Math., 130:6 (2008), 1561–1627 | DOI | MR | Zbl

[11] Dolgachev I., “Weighted projective varieties”, Lecture Notes in Math., 956, Springer-Verlag, 1982, 34–71 | DOI | MR

[12] Munkres J. R., Elements of algebraic topology, Addison-Wesley, Reading, MA, 1984 | MR | Zbl

[13] Cohen M. M., “Simplicial structures and transverse cellularity”, Ann. of Math., 85:2 (1967), 218–245 | DOI | MR | Zbl