Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_5_a2, author = {M. A. Vsemirnov}, title = {On $(2,3)$-generation of matrix groups over the ring of {integers,~II}}, journal = {Algebra i analiz}, pages = {62--85}, publisher = {mathdoc}, volume = {32}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_5_a2/} }
M. A. Vsemirnov. On $(2,3)$-generation of matrix groups over the ring of integers,~II. Algebra i analiz, Tome 32 (2020) no. 5, pp. 62-85. http://geodesic.mathdoc.fr/item/AA_2020_32_5_a2/
[1] Bosma W., Cannon J., Playoust C., “The Magma algebra system. I. The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl
[2] Di Martino L., Vavilov N., “$(2,3)$-generation of $\mathrm{SL}_n(q)$. I. Cases $n = 5, 6, 7$”, Comm. Algebra, 22:4 (1994), 1321–1347 | DOI | MR | Zbl
[3] Di Martino L., Vavilov N., “$(2, 3)$-generation of $\mathrm{SL}_n(q)$. II. Cases $n \ge 8$”, Comm. Algebra, 24:2 (1996), 487–515 | DOI | MR | Zbl
[4] Klein F., Fricke R., Vorlesungen über die Theorie der elliptischen Modulfunctionen, v. I, Leipzig, 1890 | MR
[5] Hahn A. J., O'Meara O. T., The classical groups and $K$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[6] Liebeck M. W., Shalev A. A., “Classical groups, probabilistic methods, and the $(2,3)$-generation problem”, Ann. of Math. (2), 144:1 (1996), 77–125 | DOI | MR | Zbl
[7] Luzgarev A. Yu., Pevzner I. M., “Nekotorye fakty iz zhizni $\mathrm{GL}(5,\mathbb{Z})$”, Zap. nauch. semin. POMI, 305, 2003, 153–162
[8] Miller G. A., “On the groups generated by two operators”, Bull. Amer. Math. Soc., 7:10 (1901), 424–426 | DOI | MR | Zbl
[9] Nuzhin Ya. N., “Ob odnom voprose M. Kondera”, Mat. zametki, 70:1 (2001), 79–87 | MR | Zbl
[10] Pellegrini M. A., “The $(2,3)$-generation of the special linear groups over finite fields”, Bull. Aust. Math. Soc., 95:1 (2017), 48–53 | DOI | MR | Zbl
[11] Sanchini P., Tamburini M. C., “Constructive $(2,3)$-generation: a permutational approach”, Rend. Sem. Mat. Fis. Milano, 64 (1994), 141–158 | DOI | MR
[12] Serre J.-P., A course in arithmetic, Grad. Texts in Math., 7, Springer-Verlag, New York–Heidelberg, 1973 | DOI | MR | Zbl
[13] Tamburini M. C., “The $(2,3)$-generation of matrix groups over the integers”, Ischia group theory 2008, World Sci. Publ., Hackensack, NJ, 2009, 258–264 | DOI | MR | Zbl
[14] Tamburini M. C., Vassallo S., “$(2,3)$-generation of linear groups”, Writings in honor of Giovanni Melzi, Sci. Mat., 11, Vita e Pensiero, Milan, 1994, 391–399 | MR
[15] Tamburini M. C., Wilson J. S., Gavioli N., “On the $(2,3)$-generation of some classical groups. I”, J. Algebra, 168:1 (1994), 353–370 | DOI | MR | Zbl
[16] Tamburini M. C., Zucca P., “On a question of M. Conder”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11:1 (2000), 5–7 | MR | Zbl
[17] Vsemirnov M. A., Yavlyaetsya li gruppa $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-porozhdennoi?, Zap. nauch. semin. POMI, 330, 2006, 101–130 | Zbl
[18] Vsemirnov M. A., “The group $\mathrm{GL}(6,\mathbb{Z})$ is $(2,3)$-generated”, J. Group Theory, 10:4 (2007), 425–430 | DOI | MR | Zbl
[19] Vsemirnov M. A., “O $(2,3)$-porozhdenii matrichnykh grupp nad koltsom tselykh chisel”, Algebra i analiz, 19:6 (2007), 22–58
[20] Vsemirnov M. A., “On $(2,3)$-generation of small rank matrix groups over integers”, Quad. Semin. Mat. Brescia, 2008, no. 30, 1–15 http://semmat.dmf.unicatt.it/preprints/2008.html