Growth theorems for metric spaces with applications to PDE
Algebra i analiz, Tome 32 (2020) no. 4, pp. 271-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to some extensions of the joint results by N. V. Krylov and the author on the Harnack inequalities for second order elliptic and parabolic equations in nondivergence form to metric spaces of homogeneous type. The main tools are special Landis-type growth theorems.
Keywords: covering lemmas, quasimetric spaces, Harnack inequality.
@article{AA_2020_32_4_a7,
     author = {M. V. Safonov},
     title = {Growth theorems for metric spaces with applications to {PDE}},
     journal = {Algebra i analiz},
     pages = {271--284},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_4_a7/}
}
TY  - JOUR
AU  - M. V. Safonov
TI  - Growth theorems for metric spaces with applications to PDE
JO  - Algebra i analiz
PY  - 2020
SP  - 271
EP  - 284
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_4_a7/
LA  - en
ID  - AA_2020_32_4_a7
ER  - 
%0 Journal Article
%A M. V. Safonov
%T Growth theorems for metric spaces with applications to PDE
%J Algebra i analiz
%D 2020
%P 271-284
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_4_a7/
%G en
%F AA_2020_32_4_a7
M. V. Safonov. Growth theorems for metric spaces with applications to PDE. Algebra i analiz, Tome 32 (2020) no. 4, pp. 271-284. http://geodesic.mathdoc.fr/item/AA_2020_32_4_a7/

[1] Aimar H., Forzani L., Toledano R., “Hölder regularity of solutions of PDE's: a geometrical view”, Comm. Partial Differential Equations, 26:7-8 (2001), 1145–1173 | DOI | MR | Zbl

[2] Aleksandrov A. D., “Usloviya edinstvennosti i otsenki resheniya zadachi Dirikhle”, Vestn. Leningr. un-ta. Ser. mat. mekh. astronom., 1963, no. 3, 5–29 | Zbl

[3] Caffarelli L., Gutiérrez C. E., “Real analysis related to the Monge-Ampère equation”, Trans. Amer. Math. Soc., 348:3 (1996), 1075–1092 | DOI | MR | Zbl

[4] Caffarelli L., Gutiérrez C. E., “Properties of the solutions of the linearized Monge–Ampère equation”, Amer. J. Math., 119:2 (1997), 423–465 | DOI | MR | Zbl

[5] Coifman R., Weiss G., Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[6] De Giorgi E., “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3), 3 (1957), 25–43 | MR | Zbl

[7] Dunford N., Schwartz J. T., Linear operators, v. 1, General theory, Wiley-Intersci. Publ., New York, 1988 | MR

[8] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl

[9] de Guzmán M., Differentiation of integrals in $\mathbb{R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin, 1975 | MR

[10] Heinonen J., Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[11] Krylov N. V., “Posledovatelnosti vypuklykh funktsii i otsenki maksimuma resheniya parabolicheskogo uravneniya”, Sib. mat. zh., 17:2 (1976), 290–303 | MR | Zbl

[12] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985

[13] Krylov N. V., Safonov M. V., “Otsenka veroyatnosti popadaniya diffuzionnogo protsessa v mnozhestvo polozhitelnoi mery”, Dokl. AN SSSR, 245:1 (1979), 18–20 | MR

[14] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR. Cer. mat., 44:1 (1980), 161–175 | MR | Zbl

[15] Landis E. M., “Novoe dokazatelstvo teoremy E. De Dzhordzhi”, Tr. Mosk. mat. o-va, 16, 1967, 319–328 | Zbl

[16] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971

[17] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[18] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[19] Macías R. A., Segovia C., “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33:3 (1979), 257–270 | DOI | MR | Zbl

[20] Moser J., “On Harnack's theorem for elliptic differential equation”, Comm. Pure Appl. Math., 14 (1961), 577–591 | DOI | MR | Zbl

[21] Moser J., “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math., 17 (1964), 101–134 ; and correction in: Comm. Pure Appl. Math., 20 (1967), 231–236 | DOI | MR | Zbl | DOI | MR | Zbl

[22] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[23] Nazarov A. I., “Printsip maksimuma A. D. Aleksandrova”, Sovrem. mat. prilozhen., 29, 2005, 127–143

[24] Rudin W., Real and somplex analysis, 3rd ed., McGraw-Hill, New York, 1987 | MR

[25] Safonov M. V., “Neravenstvo Kharnaka dlya ellipticheskikh uravnenii i gelderovost ikh reshenii”, Zap. nauch. semin. LOMI, 96, 1980, 272–287 | Zbl

[26] Stein E., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, 1970 | MR

[27] Vitali G., “Sui gruppi di punti e sulle funzioni di variabili reali”, Atti Accad. Sci. Torino, 43 (1908), 75–92

[28] Wiener N., “The ergodic theorem”, Duke Math. J., 5 (1939), 1–18 | DOI | MR