Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_3_a5, author = {M. Bildhauer and M. C\'ardenas and M. Fuchs and J. Weickert}, title = {Existence theory for the {EED} inpainting problem}, journal = {Algebra i analiz}, pages = {127--148}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a5/} }
M. Bildhauer; M. Cárdenas; M. Fuchs; J. Weickert. Existence theory for the EED inpainting problem. Algebra i analiz, Tome 32 (2020) no. 3, pp. 127-148. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a5/
[1] Adams R. A., Sobolev spaces, Pure Appl. Math., 65, Acad. Press, New-York–London, 1975 | MR | Zbl
[2] Catté F., Lions P.-L., Morel J.-M., Coll T., “Image selective smoothing and edge detection by nonlinear diffusion”, SIAM J. Numer. Anal., 29 (1992), 182–193 | DOI | MR | Zbl
[3] Charbonnier P., Blanc-Féraud L., Aubert G., Barlaud M., “Two deterministic half-quadratic regularization algorithms for computed imaging”, Proc. IEEE Internat. Conf. on Image Processing (Austin, TX, 1994), v. 2, IEEE Computer Soc. Press, 1994, 168–172 | DOI
[4] Galić I., Weickert J., Welk M., Bruhn A., Belyaev A., Seidel H.-P., “Image compression with anisotropic diffusion”, J. Math. Imaging Vis., 31:2-3 (2008), 255–269 | DOI | MR | Zbl
[5] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Third ed., revised, Springer, Berlin, 1998 | MR
[6] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[7] Mainberger M., Hoffmann S., Weickert J., et al., “Optimising spatial and tonal data for homogeneous diffusion inpainting”, Scale space and variational methods in computer vision, Lecture Notes Comput. Sci., 6667, Springer, Berlin, 2012, 26–37 | DOI | MR
[8] Morrey C. B., Multiple integrals in the calculus of variations, Grundlehren Math. Wiss., 130, Springer-Verlag, New York, 1966 | DOI | MR | Zbl
[9] Perona P., Malik J., “Scale space and edge detection using anisotropic diffusion”, IEEE Trans. Pattern Anal. Machine Intelligence, 12 (1990), 629–639 | DOI
[10] Schmaltz C., Peter P., Mainberger M., Ebel F., Weickert J., Bruhn A., “Understanding, optimising, and extending data compression with anisotropic diffusion”, Int. J. Comput. Vis., 108:3 (2014), 222–240 | DOI | MR
[11] Weickert J., “Theoretical foundations of anisotropic diffusion in image processing”, Comput. Suppl., 11 (1996), 221–236 | DOI | MR
[12] Weickert J., Anisotropic diffusion in image pocessing, B. G. Teubner, Stuttgart, 1998 | MR
[13] Weickert J., Welk M., “Tensor field interpolation with PDEs”, Visualization and processing of tensor fields, Math. Vis., Springer, Berlin, 2006, 315–325 | MR