Existence theory for the EED inpainting problem
Algebra i analiz, Tome 32 (2020) no. 3, pp. 127-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

An existence theory is developed for an elliptic boundary value problem in image analysis known as edge-enhancing diffusion (EED) inpainting. The EED inpainting problem aims at restoration missing data in an image as the steady state of a nonlinear anisotropic diffusion process where the known data provide Dirichlet boundary conditions. The existence of a weak solution is established by applying the Leray–Schauder fixed point theorem, and it is shown that the set of all possible weak solutions is bounded. Moreover, it is demonstrated that under certain conditions the sequences resulting from iterative application of the operator from the existence theory contain convergent subsequences.
Keywords: boundary value problems, anisotropic diffusion, Leray–Schauder fixed point theorem, inpainting, image restoration, image compression.
@article{AA_2020_32_3_a5,
     author = {M. Bildhauer and M. C\'ardenas and M. Fuchs and J. Weickert},
     title = {Existence theory for the {EED} inpainting problem},
     journal = {Algebra i analiz},
     pages = {127--148},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a5/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Cárdenas
AU  - M. Fuchs
AU  - J. Weickert
TI  - Existence theory for the EED inpainting problem
JO  - Algebra i analiz
PY  - 2020
SP  - 127
EP  - 148
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a5/
LA  - en
ID  - AA_2020_32_3_a5
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Cárdenas
%A M. Fuchs
%A J. Weickert
%T Existence theory for the EED inpainting problem
%J Algebra i analiz
%D 2020
%P 127-148
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a5/
%G en
%F AA_2020_32_3_a5
M. Bildhauer; M. Cárdenas; M. Fuchs; J. Weickert. Existence theory for the EED inpainting problem. Algebra i analiz, Tome 32 (2020) no. 3, pp. 127-148. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a5/

[1] Adams R. A., Sobolev spaces, Pure Appl. Math., 65, Acad. Press, New-York–London, 1975 | MR | Zbl

[2] Catté F., Lions P.-L., Morel J.-M., Coll T., “Image selective smoothing and edge detection by nonlinear diffusion”, SIAM J. Numer. Anal., 29 (1992), 182–193 | DOI | MR | Zbl

[3] Charbonnier P., Blanc-Féraud L., Aubert G., Barlaud M., “Two deterministic half-quadratic regularization algorithms for computed imaging”, Proc. IEEE Internat. Conf. on Image Processing (Austin, TX, 1994), v. 2, IEEE Computer Soc. Press, 1994, 168–172 | DOI

[4] Galić I., Weickert J., Welk M., Bruhn A., Belyaev A., Seidel H.-P., “Image compression with anisotropic diffusion”, J. Math. Imaging Vis., 31:2-3 (2008), 255–269 | DOI | MR | Zbl

[5] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Third ed., revised, Springer, Berlin, 1998 | MR

[6] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[7] Mainberger M., Hoffmann S., Weickert J., et al., “Optimising spatial and tonal data for homogeneous diffusion inpainting”, Scale space and variational methods in computer vision, Lecture Notes Comput. Sci., 6667, Springer, Berlin, 2012, 26–37 | DOI | MR

[8] Morrey C. B., Multiple integrals in the calculus of variations, Grundlehren Math. Wiss., 130, Springer-Verlag, New York, 1966 | DOI | MR | Zbl

[9] Perona P., Malik J., “Scale space and edge detection using anisotropic diffusion”, IEEE Trans. Pattern Anal. Machine Intelligence, 12 (1990), 629–639 | DOI

[10] Schmaltz C., Peter P., Mainberger M., Ebel F., Weickert J., Bruhn A., “Understanding, optimising, and extending data compression with anisotropic diffusion”, Int. J. Comput. Vis., 108:3 (2014), 222–240 | DOI | MR

[11] Weickert J., “Theoretical foundations of anisotropic diffusion in image processing”, Comput. Suppl., 11 (1996), 221–236 | DOI | MR

[12] Weickert J., Anisotropic diffusion in image pocessing, B. G. Teubner, Stuttgart, 1998 | MR

[13] Weickert J., Welk M., “Tensor field interpolation with PDEs”, Visualization and processing of tensor fields, Math. Vis., Springer, Berlin, 2006, 315–325 | MR