The regular free boundary in the thin obstacle problem for degenerate parabolic equations
Algebra i analiz, Tome 32 (2020) no. 3, pp. 84-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the existence, the optimal regularity of solutions, and the regularity of the free boundary near the so-called regular points in a thin obstacle problem that arises as the local extension of the obstacle problem for the fractional heat operator $(\partial_t - \Delta_x)^s$ for $s \in (0,1)$. Our regularity estimates are completely local in nature. This aspect is of crucial importance in our forthcoming work on the blowup analysis of the free boundary, including the study of the singular set. Our approach is based on first establishing the boundedness of the time-derivative of the solution. This allows reduction to an elliptic problem at every fixed time level. Using several results from the elliptic theory, including the epiperimetric inequality, we establish the optimal regularity of solutions as well as the $H^{1+\gamma,\frac{1+\gamma}{2}}$ regularity of the free boundary near such regular points.
Keywords: Signorini complementary conditions, elastostatics, problems with unilateral constraints, fractional heat equation.
@article{AA_2020_32_3_a4,
     author = {A. Banerjee and D. Danielli and N. Garofalo and A. Petrosyan},
     title = {The regular free boundary in the thin obstacle problem for degenerate parabolic equations},
     journal = {Algebra i analiz},
     pages = {84--126},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a4/}
}
TY  - JOUR
AU  - A. Banerjee
AU  - D. Danielli
AU  - N. Garofalo
AU  - A. Petrosyan
TI  - The regular free boundary in the thin obstacle problem for degenerate parabolic equations
JO  - Algebra i analiz
PY  - 2020
SP  - 84
EP  - 126
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a4/
LA  - en
ID  - AA_2020_32_3_a4
ER  - 
%0 Journal Article
%A A. Banerjee
%A D. Danielli
%A N. Garofalo
%A A. Petrosyan
%T The regular free boundary in the thin obstacle problem for degenerate parabolic equations
%J Algebra i analiz
%D 2020
%P 84-126
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a4/
%G en
%F AA_2020_32_3_a4
A. Banerjee; D. Danielli; N. Garofalo; A. Petrosyan. The regular free boundary in the thin obstacle problem for degenerate parabolic equations. Algebra i analiz, Tome 32 (2020) no. 3, pp. 84-126. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a4/

[1] Athanasopoulos I., “Regularity of the solution of an evolution problem with inequalities on the boundary”, Comm. Partial Differential Equations, 7:12 (1982), 1453–1465 | DOI | MR

[2] Athanasopoulos I., Caffarelli L., Milakis E., “On the regularity of the non-dynamic parabolic fractional obstacle problem”, J. Differential Equations, 265:6 (2018), 2614–2647 | DOI | MR | Zbl

[3] Athanasopoulos I., Caffarelli L., Milakis E., “Parabolic obstacle problems, quasi-convexity and regularity”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19:2 (2019), 781–825 | MR | Zbl

[4] Athanasopoulos I., Caffarelli L. A., Salsa S., “The structure of the free boundary for lower dimensional obstacle problems”, Amer. J. Math., 130:2 (2008), 485–498 | DOI | MR | Zbl

[5] Arkhipova A. A., Uraltseva N. N., “Regulyarnost resheniya zadachi s dvustoronnim ogranicheniem na granitse dlya ellipticheskikh i parabolicheskikh uravnenii”, Tr. Mat. in-ta AN SSSR, 179, 1988, 5–22 | MR

[6] Audrito A., Terracini S., On the nodal set of solutions to a class of nonlocal parabolic reaction-diffusion equations, 2018, arXiv: 1807.10135 | MR

[7] Banerjee A., Garofalo N., “Monotonicity of generalized frequencies and the strong unique continuation property for fractional parabolic equations”, Adv. Math., 336:2018, 149–241 | MR | Zbl

[8] Banerjee A., Danielli D., Garofalo N., Petrosyan A., The structure of the singular set in the thin obstacle problem for degenerate parabolic equations, arXiv: 1902.07457

[9] Caffarelli L., “Interior a priori estimates for solutions of fully nonlinear equations”, Ann. of Math. (2), 130:1 (1989), 189–213 | DOI | MR | Zbl

[10] Caffarelli L. A., De Silva D., Savin O., “The two membranes problem for different operators”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34:4 (2017), 899–932 | DOI | MR | Zbl

[11] Caffarelli L. A., Salsa S., Silvestre L., “Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian”, Invent. Math., 171:2 (2008), 425–461 | DOI | MR | Zbl

[12] Chiarenza F., Serapioni R., “A remark on a Harnack inequality for degenerate parabolic equations”, Rend. Sem. Mat. Univ. Padova, 73 (1985), 179–190 | MR | Zbl

[13] Danielli D., Garofalo N., Petrosyan A., To T., “Optimal regularity and the free boundary in the parabolic Signorini problem”, Mem. Amer. Math. Soc., 249, no. 1181, 2017, 1–103 | MR

[14] Duvaut G., Lions J.-L., Les inéquations en mécanique et en physique, Trav. Recherches Math., 21, Dunod, Paris, 1972 | MR

[15] Focardi M., Spadaro E., The local structure of the free boundary in the fractional obstacle problem, arXiv: 1903.05909

[16] Focardi M., Spadaro E., “On the measure and the structure of the free boundary of the lower dimensional obstacle problem”, Arch. Rational Mech. Anal., 230:1 (2018), 125–184 | DOI | MR | Zbl

[17] Focardi M., Spadaro E., “An epiperimetric inequality for the thin obstacle problem”, Adv. Differential Equations, 21:1-2 (2016), 153–200 | MR | Zbl

[18] Garofalo N., Petrosyan A., “Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem”, Invent. Math., 177:2 (2009), 415–461 | DOI | MR | Zbl

[19] Garofalo N., Petrosyan A., Smit Vega Garcia M., “An epiperimetric inequality approach to the regularity of the free boundary in the Signorini problem with variable coefficients”, J. Math. Pures Appl. (9), 105:6 (2016), 745–787 | DOI | MR | Zbl

[20] Garofalo N., Petrosyan A., Pop C. A., Smit Vega Garcia M., “Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift”, Ann. Inst. H. Poincaré Anal. Non Lináire, 34:3 (2017), 533–570 | DOI | MR | Zbl

[21] Garofalo N., Ros-Oton X., “Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian”, Revista Mat. Iberoamer. (to appear) | MR

[22] Garofalo N., Smit Vega Garcia M., “New monotonicity formulas and the optimal regularity in the Signorini problem with variable coefficients”, Adv. Math., 262 (2014), 682–750 | DOI | MR | Zbl

[23] Koch H., Rüland A., Shi W., Higher regularity for the fractional thin obstacle problem, arXiv: 1605.06662 | MR

[24] Nekvinda A., “Characterization of traces of the weighted Sobolev space $W^{1,p}(\Omega,d^{\varepsilon}M)$ on $M$”, Czechoslovak Math. J., 43 (1993), 695–711 | MR | Zbl

[25] Nyström K., Sande O., “Extension properties and boundary estimates for a fractional heat operator”, Nonlinear Anal., 140 (2016), 29–37 | DOI | MR | Zbl

[26] Petrosyan A., Pop C. A., “Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift”, J. Funct. Anal., 268:2 (2015), 417–472 | DOI | MR | Zbl

[27] Petrosyan A., Zeller A., “Boundedness and continuity of the time derivative in the parabolic Signorini problem”, Math. Res. Lett., 26:1 (2019), 281–292 | DOI | MR | Zbl

[28] Shi W., An epiperimetric inequality approach to the parabolic Signorini problem, arXiv: 1810.11791

[29] Sire Y., Terracini S., Tortone G., On the nodal set of solutions to degenerate or singular elliptic equations with an application to $s$-harmonic functions, 2018, arXiv: 1808.01851 | MR

[30] Stinga P. R., Torrea J. L., “Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation”, SIAM J. Math. Anal., 49:5 (2017), 3893–3924 | DOI | MR | Zbl

[31] Sire Y., Terracini S., Vita S., Liouville type theorems and regularity of solutions to degenerate or singular problems. Part I. Even solutions, arXiv: 1904.02143v1

[32] Uraltseva N. N., “Nepreryvnost po Gelderu gradientov reshenii parabolicheskikh uravnenii pri granichnykh usloviyakh tipa Sinorini”, Dokl. AN SSSR, 280:3 (1985), 563–565 | MR | Zbl