$L_p$-estimates of solution of the free boundary problem for viscous compressible and incompressible fluids in the linear approximation
Algebra i analiz, Tome 32 (2020) no. 3, pp. 254-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains $L_p$-estimates and a theorem on the local in time solvability of the problem arising as a result of linearization of the free boundary problem for two viscous fluids, compressible and incompressible, contained in a bounded vessel, separated by a free interface, and subject to mass and capillary forces. This result is known for the case of $p=2$; it serves as an analytical basis for the study of the complete nonlinear problem. The proof is based on the “maximal regularity” estimate of the solution obtained with the help of the $L_p$ Fourier multiplier theorem due to P. I. Lizorkin.
Keywords: free boundary problems, Fourier multiplier theorem, compressible and incompressible fluids.
@article{AA_2020_32_3_a11,
     author = {V. A. Solonnikov},
     title = {$L_p$-estimates of solution of the free boundary problem for viscous compressible and incompressible fluids in the linear approximation},
     journal = {Algebra i analiz},
     pages = {254--291},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a11/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - $L_p$-estimates of solution of the free boundary problem for viscous compressible and incompressible fluids in the linear approximation
JO  - Algebra i analiz
PY  - 2020
SP  - 254
EP  - 291
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a11/
LA  - en
ID  - AA_2020_32_3_a11
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T $L_p$-estimates of solution of the free boundary problem for viscous compressible and incompressible fluids in the linear approximation
%J Algebra i analiz
%D 2020
%P 254-291
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a11/
%G en
%F AA_2020_32_3_a11
V. A. Solonnikov. $L_p$-estimates of solution of the free boundary problem for viscous compressible and incompressible fluids in the linear approximation. Algebra i analiz, Tome 32 (2020) no. 3, pp. 254-291. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a11/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975

[2] Solonnikov V. A., “Apriornye otsenki dlya uravnenii vtorogo poryadka parabolicheskogo tipa”, Tr. Mat. in-ta AN SSSR, 70, 1964, 133–212 | Zbl

[3] Solonnikov V. A., “Ob odnoi nachalno-kraevoi zadache dlya uravnenii Stoksa, voznikayuschei pri izuchenii zadachi so svobodnoi granitsei”, Tr. Mat. in-ta RAN, 188, 1990, 150–188

[4] Lizorkin P. I., “K teorii multiplikatorov Fure”, Tr. Mat. in-ta RAN, 173, 1986, 149–163 | MR | Zbl

[5] Denisova I. V., “Evolution of compressible and incompressible fluids separated by a closed interface”, Interfaces Free Bound., 2:3 (2000), 283–312 | DOI | MR | Zbl

[6] Solonnikov V. A., “On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a free interface”, Algebra i analiz, 30:3 (2018), 274–317 | MR

[7] Solonnikov V. A., “$L_p$-theory for the linear problem arising in the study of the motion of an isolated liquid mass”, J. Math. Sci. (N.Y.), 189:4 (2013), 699–733 | DOI | MR | Zbl

[8] Volevich L. R., “Pazreshimost kraevykh zadach dlya obschikh ellipticheskikh sistem”, Mat. sb., 68:3 (1965), 373–416 | Zbl

[9] Mogilevskii I. Sh., “Otsenki resheniya obschei nachalno-kraevoi zadachi dlya lineinoi nestatsionarnoi sistemy uravnenii Nave–Stoksa v poluprostranstve”, Zap. nauch. semin. LOMI, 84, 1979, 147–173

[10] Denisova I. V., “On the energy inequality for the problem on the evolution of two fluids of different types without surface tension”, J. Math. Fluid Mech., 17:11 (2015), 163–198 | MR

[11] Kubo T., Shibata Y., Soga K., “$R$-boundedness for the two phase flow: compressible-incompressible model problem”, Bound. Value Probl., 141 (2014), 1–33 | MR

[12] Kubo T., Shibata Y., On the evolution of compressible and incompressible fluids with a sharp interface, Preprint, 2013

[13] Solonnikov V.A., “$L_2$-theory for two viscous fluids of different type: compressible and incompressible”, Algebra i analiz, 32:1 (2020), 121–186

[14] Denisova I. V., Solonnikov V. A., “Globalnaya razreshimost zadachi o dvizhenii dvukh neszhimaemykh kapillyarnykh zhidkostei v konteinere”, Zap. nauch. semin. LOMI, 397, 2011, 20–52

[15] Prüss J., Simonett G., Moving interfaces and quasilinear parabolic evolution equations, Monogr. Math., 105, Birkhäuser, Cham, 2016 | DOI | MR | Zbl