Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_3_a1, author = {N. V. Krylov}, title = {Rubio de {Francia} extrapolation theorem and related topics in the theory of elliptic and parabolic equations. {A~survey}}, journal = {Algebra i analiz}, pages = {5--38}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a1/} }
TY - JOUR AU - N. V. Krylov TI - Rubio de Francia extrapolation theorem and related topics in the theory of elliptic and parabolic equations. A~survey JO - Algebra i analiz PY - 2020 SP - 5 EP - 38 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a1/ LA - en ID - AA_2020_32_3_a1 ER -
N. V. Krylov. Rubio de Francia extrapolation theorem and related topics in the theory of elliptic and parabolic equations. A~survey. Algebra i analiz, Tome 32 (2020) no. 3, pp. 5-38. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a1/
[1] Amann H., “Maximal regularity for non-autonomous evolution equations”, Adv. Nonlinear Stud., 4:4 (2004), 417–430 | DOI | MR | Zbl
[2] Bramanti M., Cerutti M. C., “$W_{p}^{1,2}$ solvability for the Cauchy–Dirichlet problem for parabolic equations with $\mathrm{VMO}$ coefficients”, Comm. Partial Differential Equations, 18:9-10 (1993), 1735–1763 | DOI | MR | Zbl
[3] Byun S.-S., Wang L., “Elliptic equations with measurable coefficients in Reifenberg domains”, Adv. Math., 225:5 (2010), 2648–2673 | DOI | MR | Zbl
[4] Byun S.-S., Palagachev D. K., Wang L., “Parabolic systems with measurable coefficients in Reifenberg domains”, Int. Math. Res. Not. IMRN, 13 (2013), 3053–3086 | DOI | MR | Zbl
[5] Cannarsa P., Vespri V., “On maximal $L^{p}$ regularity for the abstract Cauchy problem”, Boll. Un. Mat. It. B(6), 5 (1986), 165–175 | MR | Zbl
[6] Chiarenza F., Frasca M., Longo P., “Interior $W^ {2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients”, Ricerche Mat., 40:1 (1991), 149–168 | MR | Zbl
[7] Chiarenza F., Frasca M., Longo P., “$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $\mathrm{VMO}$ coefficients”, Trans. Amer. Math. Soc., 336:2 (1993), 841–853 | MR | Zbl
[8] Coulhon T., Duong X. T., “Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss”, Adv. Differential Equations, 5:1-3 (2000), 343–368 | MR | Zbl
[9] Cruz-Uribe D. V., Martell J. M., Pérez C., Weights, extrapolation and the theory of Rubio de Francia, Oper. Theory Adv. Appl., 215, Birkhäuser/Springer Basel AG, Basel, 2011 | MR | Zbl
[10] Denk R., Hieber M., Prüss J., “$\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type”, Mem. Amer. Math. Soc., 166, no. 788, 2003 | MR
[11] Hongjie Dong, “Solvability of parabolic equations in divergence form with partially $\mathrm{BMO}$ coefficients”, J. Funct. Anal., 258:7 (2010), 2145–2172 | DOI | MR | Zbl
[12] Hongjie Dong, Doyoon Kim, “Higher order elliptic and parabolic systems with variably partially $\mathrm{BMO}$ coefficients in regular and irregular domains”, J. Funct. Anal., 261:11 (2011), 3279–3327 | DOI | MR | Zbl
[13] Hongjie Dong, Doyoon Kim, “$L_p$-solvability of divergence type parabolic and elliptic systems with partially $\mathrm{BMO}$ coefficients”, Calc. Var. Partial Differential Equations, 40:3-4 (2011), 357–389 | DOI | MR | Zbl
[14] Hongjie Dong, Doyoon Kim, “Parabolic and elliptic systems in divergence form with variably partially $\mathrm{BMO}$ coefficients”, SIAM J. Math. Anal., 43:3 (2011), 1075–1098 | DOI | MR | Zbl
[15] Hongjie Dong, Doyoon Kim, “Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces”, Adv. Math., 274 (2015), 681–735 | DOI | MR | Zbl
[16] Hongjie Dong, Doyoon Kim, “On $L_p$-estimates for elliptic and parabolic equations with $A_p$ weights”, Trans. Amer. Math. Soc., 370:7 (2018), 5081–5130 | DOI | MR | Zbl
[17] Hongjie Dong, Krylov N. V., “Second-order elliptic and parabolic equations with $B(\mathbb{R}^{2}, \mathrm{VMO})$ coefficients”, Trans. Amer. Math. Soc., 362:12 (2010), 6477–6494 | DOI | MR | Zbl
[18] Hongjie Dong, Krylov N. V., “Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces”, Calc. Var. Partial Differential Equations, 58:4 (2019), 145, 32 pp. | DOI | MR | Zbl
[19] Duoandikoetxea J., “Extrapolation of weights revisited: new proofs and sharp bounds”, J. Funct. Anal., 260:6 (2011), 1886–1901 | DOI | MR | Zbl
[20] Fefferman C., Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129:3-4 (1972), 137–193 | DOI | MR | Zbl
[21] Fröhlich A., Stokes– und Navier–Stokes–Gleichungen in gewichteten Funktionenräumen, Dissertation, TU Darmstadt, 2001 | Zbl
[22] Gallarati C., Lorist E., Veraar M., “On the $\ell^s$-boundedness of a family of integral operators”, Rev. Mat. Iberoam., 32:4 (2016), 1277–1294 | DOI | MR | Zbl
[23] Gallarati C., Veraar M., “Maximal regularity for non-autonomous equations with measurable dependence on time”, Potential Anal., 46:3 (2017), 527–567 | DOI | MR | Zbl
[24] Gallarati C., Veraar M., “Evolution families and maximal regularity for systems of parabolic equations”, Adv. Differential Equations, 22:3-4 (2017), 169–190 | MR | Zbl
[25] Garcia-Cuerva J., Rubio de Francia J. L., Weighted norm inequalities and related topics, Math. Stud., 116, North-Holland Publ. Co., Amsterdam, 1985 | MR | Zbl
[26] Giga M., Giga Y., Sohr H., “$L^{p}$ estimates for abstract linear parabolic equations”, Proc. Japan Acad. Ser. A, 67:6 (1991), 197–202 | DOI | MR | Zbl
[27] Giga M., Giga Y., Sohr H., “$L^{p}$ estimates for the Stokes system”, Functional analysis and related topics (Kyoto, 1991), Lecture Notes in Math., 1540, Springer, Berlin, 1993, 55–67 | DOI | MR | Zbl
[28] Giga Y., Sohr H., “Abstract $L^{p}$ estimates for the Cauchy problem with applications to the Navier–Stockes equations in exterior domains”, J. Funct. Anal., 102 (1991), 72–94 | DOI | MR | Zbl
[29] Guidetti D., “General linear boundary value problems for elliptic operators with $\mathrm{VMO}$ coefficients”, Math. Nachr., 237 (2002), 62–88 | 3.0.CO;2-# class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[30] Haller R., Heck H., Hieber M., “Muckenhoupt weights and maximal $L_p$-regularity”, Arch. Math. (Basel), 81:4 (2003), 422–430 | DOI | MR | Zbl
[31] Haller-Dintelmann R., Heck H., Hieber M., “$L^{p}- L^{q}$-estimates for parabolic systems in non-divergence form with $\mathrm{VMO}$ coefficients”, J. London Math Soc. (2), 74:3 (2006), 717–736 | DOI | MR | Zbl
[32] Heck H., Hieber M., “Maximal $L_p$-regularity for elliptic operators with $\mathrm{VMO}$-coefficients”, J. Evol. Equ., 3:2 (2003), 332–359 | DOI | MR | Zbl
[33] Hieber M., Prüss J., “Heat kernels and maximal $L^{p}-L^{q}$ estimates for parabolic evolution equations”, Comm. Partial Differential Equations, 22:9-10 (1997), 1647–1669 | DOI | MR | Zbl
[34] Doyoon Kim, “Parabolic equations with partially $\mathrm{BMO}$ coefficients and boundary value problems in Sobolev spaces with mixed norms”, Potential Anal., 33:1 (2010), 17–46 | DOI | MR | Zbl
[35] Doyoon Kim, Krylov N. V., “Elliptic differential equations with coefficients measurable with respect to one variable and $\mathrm{VMO}$ with respect to the others”, SIAM J. Math. Anal., 39:2 (2007), 489–506 | DOI | MR | Zbl
[36] Doyoon Kim, Krylov N. V., “Parabolic equations with measurable coefficients”, Potential Anal., 26:4 (2007), 345–361 | DOI | MR | Zbl
[37] Kozlov V., Nazarov A., “The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients”, Math. Nachr., 282:9 (2009), 1220–1241 | DOI | MR | Zbl
[38] Krylov N. V., “SPDEs in $L_{q}((0,\tau],L_{p})$ spaces”, Electronic J. Probab., 5 (2000), 13, 29 pp. http://www.math.washington.edu/ejpecp | DOI | Zbl
[39] Krylov N. V., “The heat equation in $L_{q}((0,T),L_{p})$-spaces with weights”, SIAM J. Math. Anal., 32:5 (2001), 1117–1141 | DOI | MR | Zbl
[40] Krylov N. V., “Teorema Kalderona–Zigmunda i ee prilozheniya k parabolicheskim uravneniyam”, Algebra i analiz, 13:4 (2001), 1–25
[41] Krylov N. V., “Parabolicheskie uravneniya v prostranstvakh $L_p$ so smeshannymi normami”, Algebra i analiz, 14:4 (2002), 91–106
[42] Krylov N. V., “Parabolic and elliptic equations with $\mathrm{VMO}$ coefficients”, Comm. Partial Differential Equations, 32:3 (2007), 453–475 | DOI | MR | Zbl
[43] Krylov N. V., “Parabolic equations with $\mathrm{VMO}$ coefficients in Sobolev spaces with mixed norms”, J. Funct. Anal., 250:2 (2007), 521–558 | DOI | MR | Zbl
[44] Krylov N. V., Lectures on elliptic and parabolic equations in Sobolev spaces, Grad. Stud. in Math., 96, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl
[45] Krylov N. V., “Second-order elliptic equations with variably partially $\mathrm{VMO}$ coefficients”, J. Funct. Anal., 257:6 (2009), 1695–1712 | DOI | MR | Zbl
[46] Krylov N. V., “On Bellman's equations with $\mathrm{VMO}$ coefficients”, Methods Appl. Anal., 17:1 (2010), 105–122 | MR | Zbl
[47] Krylov N. V., Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations, Math. Surveys Monogr., 233, Amer. Math. Soc., Providence, RI, 2018 | DOI | MR | Zbl
[48] Lerner A. K., “An elementary approach to several results on the Hardy–Littlewood maximal operator”, Proc. Amer. Math. Soc., 136:8 (2008), 2829–2833 | DOI | MR | Zbl
[49] Lewis J. E., “Mixed estimates for singular integrals and an application to initial value problems in parabolic differential equations”, Singular Integrals (Chicago, Ill, 1966), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 1967, 218–231 | DOI | MR
[50] Maugeri A., Palagachev D. K., Softova L. G., Elliptic and parabolic equations with discontinuous coefficients, Math. Res., 109, Wiley, Berlin, 2000 | MR | Zbl
[51] Maremonti P., Solonnikov V. A., “Ob otsenkakh reshenii nestatsionarnoi zadachi Stoksa v anizotropnykh prostranstvakh S. L. Soboleva so smeshannoi normoi”, Zap. nauch. semin. POMI, 222, 1995, 124–150
[52] Palagachev D., Softova L., “A priori estimates and precise regularity for parabolic systems with discontinuous data”, Discrete Contin. Dyn. Syst., 13:3 (2005), 721–742 | DOI | MR | Zbl
[53] Sobolevskii P. E., “Neravenstva koertsitivnosti dlya abstraktnykh parabolicheskikh uravnenii”, Dokl. AH SSSR, 157 (1964), 52–55
[54] Sauer J., “An extrapolation theorem in non-euclidean geometries and its application to partial differential equations”, J. Elliptic Parabol. Equ., 1 (2015), 403–418 | DOI | MR | Zbl
[55] Softova L., Weidemaier P., “Quasilinear parabolic problems in spaces of maximal regularity”, J. Nonlinear Convex Anal., 7:3 (2006), 529–540 | MR | Zbl
[56] Stinga P. R., Torrea J. L., Hölder, Sobolev, weak-type and $\mathrm{BMO}$ estimates in mixed-norm with weights for parabolic equations, arXiv: 1808.01311
[57] Weidemaier P., “Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm”, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47–51 | DOI | MR | Zbl