Balayage of measures and subharmonic functions to a system of rays. II. Balayages of finite genus and growth regularity on a single ray
Algebra i analiz, Tome 32 (2020) no. 1, pp. 208-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical balayages of measures and subharmonic functions are extended to a system of rays $ S$ with common origin on the complex plane $ \mathbb{C}$. For an arbitrary subharmonic function $ v$ of finite order on $ \mathbb{C}$, this allows one to build a $ \delta $-subharmonic function on $ \mathbb{C}$ that is harmonic outside of $ S$, coincides with $ v$ on $ S$ outside of a polar set, and has the same growth order as $ v$. Applications are given to the investigation of the relationship between the growth of an entire function on $ S$ and the distribution of its zeros. In the present second part of the project, the results and preliminaries of its first part are used essentially.
Keywords: entire function, sequence of zeros, subharmonic function, Riesz measure, balayage.
@article{AA_2020_32_1_a8,
     author = {B. N. Khabibullin and A. V. Shmeleva and Z. F. Abdullina},
     title = {Balayage of measures and subharmonic functions to a system of rays. {II.} {Balayages} of finite genus and growth regularity on a single ray},
     journal = {Algebra i analiz},
     pages = {208--243},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a8/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - A. V. Shmeleva
AU  - Z. F. Abdullina
TI  - Balayage of measures and subharmonic functions to a system of rays. II. Balayages of finite genus and growth regularity on a single ray
JO  - Algebra i analiz
PY  - 2020
SP  - 208
EP  - 243
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_1_a8/
LA  - ru
ID  - AA_2020_32_1_a8
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A A. V. Shmeleva
%A Z. F. Abdullina
%T Balayage of measures and subharmonic functions to a system of rays. II. Balayages of finite genus and growth regularity on a single ray
%J Algebra i analiz
%D 2020
%P 208-243
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_1_a8/
%G ru
%F AA_2020_32_1_a8
B. N. Khabibullin; A. V. Shmeleva; Z. F. Abdullina. Balayage of measures and subharmonic functions to a system of rays. II. Balayages of finite genus and growth regularity on a single ray. Algebra i analiz, Tome 32 (2020) no. 1, pp. 208-243. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a8/

[1] Khabibullin B. N., Shmeleva A. V., “Vymetanie mer i subgarmonicheskikh funktsii na sistemu luchei. I. Klassicheskii sluchai”, Algebra i analiz, 31:1 (2019), 156–210

[2] Khabibullin B. N., “Vymetanie na sistemu luchei i tselye funktsii vpolne regulyarnogo rosta”, Izv. AN SSSR. Ser. mat., 55:1 (1991), 184–202 | MR

[3] Arsove M. G., “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365 | DOI | MR | Zbl

[4] Grishin A. F., Nguen Van Kuin, Poedintseva I. V., “Teoremy o predstavlenii $\delta$-subgarmonicheskikh funktsii”, Bisnik Kharkiv. nats. univ. V. N. Karazina. Cep. Mat., prikl. mat., mekh., 1133 (2014), 56–75 | Zbl

[5] Khabibullin B. N., Rozit A. P., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii”, Funkts. anal. i ego pril., 52:1 (2018), 26–42 | DOI | MR | Zbl

[6] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980 | MR

[7] Ransford Th., Potential theory in the complex plane, London Math. Soc. Student Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[8] A. F. Grishin, T. I. Malyutina, “Novye formuly dlya indikatorov subgarmonicheskikh funktsii”, Mat. fiz., anal., geom., 12:1 (2005), 25–72 | MR | Zbl

[9] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, 1956

[10] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986

[11] Khabibullin B. N., Raspredelenie nulei tselykh funktsii i vymetanie, Diss. dokt. fiz.-mat. nauk, FTINT, Kharkov, 1993; ПОМИ РАН, СПб., 1994

[12] Khabibullin B. N., “O malosti rosta na mnimoi osi tselykh funktsii eksponentsialnogo tipa s zadannymi nulyami”, Mat. zametki, 43:5 (1988), 644–650 | MR

[13] V. S. Azarin, “O luchakh vpolne regulyarnogo rosta tseloi funktsii”, Mat. sb., 79:4 (1969), 463–476 | Zbl