$ L_2$-theory for two viscous fluids of different types: Compressible and incompressible
Algebra i analiz, Tome 32 (2020) no. 1, pp. 121-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability is proved for the rest state in the problem of evolution of two viscous fluids, compressible and incompressible, contained in a bounded vessel and separated by a free interface. The fluids are subject to mass and capillary forces. The proof of stability is based on “maximal regularity” estimates for the solution in the anisotropic Sobolev-Slobodetskiĭspaces $ W_2^{r,r/2}$ with an exponential weight.
Keywords: free boundaries, compressible and incompressible fluids, Sobolev–Slobodetskiĭ spaces.
@article{AA_2020_32_1_a6,
     author = {V. A. Solonnikov},
     title = {$ L_2$-theory for two viscous fluids of different types: {Compressible} and incompressible},
     journal = {Algebra i analiz},
     pages = {121--186},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a6/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - $ L_2$-theory for two viscous fluids of different types: Compressible and incompressible
JO  - Algebra i analiz
PY  - 2020
SP  - 121
EP  - 186
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_1_a6/
LA  - en
ID  - AA_2020_32_1_a6
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T $ L_2$-theory for two viscous fluids of different types: Compressible and incompressible
%J Algebra i analiz
%D 2020
%P 121-186
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_1_a6/
%G en
%F AA_2020_32_1_a6
V. A. Solonnikov. $ L_2$-theory for two viscous fluids of different types: Compressible and incompressible. Algebra i analiz, Tome 32 (2020) no. 1, pp. 121-186. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a6/

[1] Padula M., Solonnikov V. A., “On the local solvability of free boundary problem for the Navier–Stokes equations”, Probl. mat. anal., 50 (2010), 87–112 | MR | Zbl

[2] Denisova I.V., Solonnikov V.A., “Globalnaya razreshimost zadachi o dvizhenii dvukh neszhimaemykh kapillyarnykh zhidkostei v konteinere”, Zap. nauch. semin. POMI, 397, 2011, 20–52

[3] Kühne M., Prüss J., Wilke M., “Qualitative behavior of solutions for the two-phase Navier–Stokes equations with surface tension”, Math. Ann., 356:2 (2013), 737–792 | DOI | MR

[4] Denisova I. V., Solonnikov V. A., “$L_2$-theory for two incompressible fluids separated by a free interface”, Topol. Methods Nonlinear Anal., 52:1 (2018), 213–238 | MR | Zbl

[5] Prüss J., Simonett G., Moving interfaces and quasilinear parabolic evolution equations, Monogr. Math., 105, Birkhäuser, Cham, 2016 | DOI | MR | Zbl

[6] Denisova I. V., “Evolution of compressible and incompressible fluids separated by a closed interface”, Interfaces Free Bound., 2:3 (2000), 283–312 | DOI | MR | Zbl

[7] Denisova I. V., “On energy inequality for the problem on the evolution of two fluids of different types without surface tension”, J. Math. Fluid Mech., 17:1 (2015), 183–198 | DOI | MR | Zbl

[8] Kubo T., Shibata Y., Soga K., “On the $R$-boundedness for the two-phase problem: compressible-incompressible model problem”, Bound. Value Probl., 2014 (2014), 141 | DOI | MR | Zbl

[9] Kubo T., Shibata Y., On the evolution of compressible and incompressible fluids with a sharp interface, Preprint, 2013

[10] Denisova I. V., Solonnikov V. A., “Local and global solvability of free boundary problems for compressible Navier–Stokes equations near equilibria”, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, 2018, 1947–2035 | DOI | MR

[11] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi mat. nauk, 19:3 (1964), 53–161 | MR | Zbl

[12] Solonnikov V. A., “O neustanovivshemsya dvizhenii konechnoi massy zhidkosti, ogranichennoi svobodnoi poverkhnosti”, Zap. nauch. semin. POMI, 152, 1986, 137–157 | Zbl

[13] Solonnikov V. A., “Otsenka obobschennoi energii v zadache so svobodnoi granitsei dlya vyazkoi neszhimaemoi zhidkosti”, Zap. nauch. semin. POMI, 282, 2001, 216–243 | Zbl

[14] Solonnikov V. A., “On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a free interface”, Algebra i analiz, 30:2 (2018), 274–317 | MR

[15] Padula M., “On the exponential stability of the rest state of a viscous isotermal fluid”, J. Math. Fluid Mech., 1:1 (1999), 62–67 | DOI | MR

[16] Padula M., Solonnikov V. A., “On the global existence of non-steady motions of a fluid drop and their exponential decay to a rigid rotation”, Topics in Mathematical Fluid Mechanics, Quad. Mat., 10, Dept. Math., Seconda Univ. Napoli, Caserta, 2002, 185–218 | MR

[17] Solonnikov V. A., “Otsenki reshenii nestatsionarnoi sistemy Nave–Stoksa”, Zap. nauch. semin. LOMI, 38, 1973, 153–231 | Zbl

[18] Solonnikov V. A., “Apriornye otsenki dlya uravnenii vtorogo poryadka parabolicheskogo tipa”, Tr. Mat. in-ta AN SSSR, 70, 1964, 133–212 | Zbl