Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_1_a2, author = {M. V. Meshcheryakov}, title = {Classification of taut irreducible real linear representations of compact connected {Lie} groups}, journal = {Algebra i analiz}, pages = {40--50}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a2/} }
M. V. Meshcheryakov. Classification of taut irreducible real linear representations of compact connected Lie groups. Algebra i analiz, Tome 32 (2020) no. 1, pp. 40-50. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a2/
[1] Shern S., Lashof R. K., “On the total curvature of immersed manifolds II”, Michigan J. Math., 5 (1958), 5–12 | DOI | MR
[2] Kuiper N. H., “Immersions with minimal total absolute curvature”, Colloque Geom. Diff. Globale (Bruxelles, 1958), CBRM, Louvain, 75–88 | MR
[3] Wilson J. P., “Some minimal imbeddings of homogeneous spaces”, J. London Math. Soc. (2), 1 (1969), 335–340 | DOI | MR | Zbl
[4] Kelly E., “Tight equivariant imbeddings of symmetric spaces”, J. Differential Geom., 7 (1972), 535–548 | DOI | MR | Zbl
[5] Keiper N., “Minimalnaya totalnaya krivizna. Vzglyad na starye i novye rezultaty”, Uspekhi mat. nauk, 40:4 (1985), 49–55 | MR
[6] Veselov A. P., Dynnikov I. A., “Integriruemye gradientnye potoki i teoriya Morsa”, Algebra i analiz, 8:3 (1996), 78–103 | MR
[7] Bott R., Samelson H., “Applications of the theory of Morse to symmetric spaces”, Amer. J. Math., 80 (1958), 964–1029 | DOI | MR
[8] Thorbergsson G., “Homogeneous spaces without taut embeddings”, Duke Math. J., 57:1 (1988), 347–355 | DOI | MR | Zbl
[9] Atiyah M. F., “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14:1 (1982), 1–15 | DOI | MR | Zbl
[10] Gorodski C., Thorbergsson G., “The classification of taut irreducible representations”, J. Reine Angew. Math., 555 (2003), 187–235 | MR | Zbl
[11] Arnold V. I., “Topologicheskaya klassifikatsiya mnogochlenov Morsa”, Tr. Mat. in-ta RAN, 268, 2010, 40–55 | Zbl
[12] Arnold V. I., “Topological classification of Morse functions and generalizations of Hilbert's $16$th problem”, Math. Phys. Anal. Geom., 10:3 (2007), 227–236 | DOI | MR | Zbl
[13] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970
[14] Pontryagin L. S., “Homologies in compact Lie groups”, Mat. sb., 6:3 (1939), 389–422 | MR
[15] Mescheryakov M. V., “Klassifikatsiya uprugikh lineinykh neprivodimykh predstavlenii kompaktnykh svyaznykh grupp Li”, Chetvertaya shkola-konf. «Algebry Li, algebraicheskie gruppy i teoriya invariantov», Tezisy dokl., Izd-vo MGU, M., 2014, 29
[16] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979
[17] Gorodski C., “Taut representations of compact simple Lie groups”, Illinois J. Math., 52:1 (2008), 121–143 | DOI | MR | Zbl
[18] Ozawa T., “On the critical sets of distance functions to a taut submanifolds”, Math. Ann., 276:1 (1986), 91–96 | DOI | MR | Zbl