Classification of taut irreducible real linear representations of compact connected Lie groups
Algebra i analiz, Tome 32 (2020) no. 1, pp. 40-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to classification of irreducible real linear representations of noncommutative compact connected Lie groups $ G$ whose Morse matrix coefficients have the minimal number of critical points permitted by the topology of  $ G$.
Keywords: compact Lie group, irreducible real linear representation, matrix coefficients, Morse function, taut immersions of smooth manifolds.
@article{AA_2020_32_1_a2,
     author = {M. V. Meshcheryakov},
     title = {Classification of taut irreducible real linear representations of compact connected {Lie} groups},
     journal = {Algebra i analiz},
     pages = {40--50},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a2/}
}
TY  - JOUR
AU  - M. V. Meshcheryakov
TI  - Classification of taut irreducible real linear representations of compact connected Lie groups
JO  - Algebra i analiz
PY  - 2020
SP  - 40
EP  - 50
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_1_a2/
LA  - ru
ID  - AA_2020_32_1_a2
ER  - 
%0 Journal Article
%A M. V. Meshcheryakov
%T Classification of taut irreducible real linear representations of compact connected Lie groups
%J Algebra i analiz
%D 2020
%P 40-50
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_1_a2/
%G ru
%F AA_2020_32_1_a2
M. V. Meshcheryakov. Classification of taut irreducible real linear representations of compact connected Lie groups. Algebra i analiz, Tome 32 (2020) no. 1, pp. 40-50. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a2/

[1] Shern S., Lashof R. K., “On the total curvature of immersed manifolds II”, Michigan J. Math., 5 (1958), 5–12 | DOI | MR

[2] Kuiper N. H., “Immersions with minimal total absolute curvature”, Colloque Geom. Diff. Globale (Bruxelles, 1958), CBRM, Louvain, 75–88 | MR

[3] Wilson J. P., “Some minimal imbeddings of homogeneous spaces”, J. London Math. Soc. (2), 1 (1969), 335–340 | DOI | MR | Zbl

[4] Kelly E., “Tight equivariant imbeddings of symmetric spaces”, J. Differential Geom., 7 (1972), 535–548 | DOI | MR | Zbl

[5] Keiper N., “Minimalnaya totalnaya krivizna. Vzglyad na starye i novye rezultaty”, Uspekhi mat. nauk, 40:4 (1985), 49–55 | MR

[6] Veselov A. P., Dynnikov I. A., “Integriruemye gradientnye potoki i teoriya Morsa”, Algebra i analiz, 8:3 (1996), 78–103 | MR

[7] Bott R., Samelson H., “Applications of the theory of Morse to symmetric spaces”, Amer. J. Math., 80 (1958), 964–1029 | DOI | MR

[8] Thorbergsson G., “Homogeneous spaces without taut embeddings”, Duke Math. J., 57:1 (1988), 347–355 | DOI | MR | Zbl

[9] Atiyah M. F., “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14:1 (1982), 1–15 | DOI | MR | Zbl

[10] Gorodski C., Thorbergsson G., “The classification of taut irreducible representations”, J. Reine Angew. Math., 555 (2003), 187–235 | MR | Zbl

[11] Arnold V. I., “Topologicheskaya klassifikatsiya mnogochlenov Morsa”, Tr. Mat. in-ta RAN, 268, 2010, 40–55 | Zbl

[12] Arnold V. I., “Topological classification of Morse functions and generalizations of Hilbert's $16$th problem”, Math. Phys. Anal. Geom., 10:3 (2007), 227–236 | DOI | MR | Zbl

[13] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970

[14] Pontryagin L. S., “Homologies in compact Lie groups”, Mat. sb., 6:3 (1939), 389–422 | MR

[15] Mescheryakov M. V., “Klassifikatsiya uprugikh lineinykh neprivodimykh predstavlenii kompaktnykh svyaznykh grupp Li”, Chetvertaya shkola-konf. «Algebry Li, algebraicheskie gruppy i teoriya invariantov», Tezisy dokl., Izd-vo MGU, M., 2014, 29

[16] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979

[17] Gorodski C., “Taut representations of compact simple Lie groups”, Illinois J. Math., 52:1 (2008), 121–143 | DOI | MR | Zbl

[18] Ozawa T., “On the critical sets of distance functions to a taut submanifolds”, Math. Ann., 276:1 (1986), 91–96 | DOI | MR | Zbl