Overgroups of Levi subgroups I. The case of abelian unipotent radical
Algebra i analiz, Tome 31 (2019) no. 6, pp. 79-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, sandwich classification is established for the overgroups of the subsystem subgroup $ E(\Delta ,R)$ of the Chevalley group $ G(\Phi ,R)$ for the three types of the pair $ (\Phi ,\Delta )$ (the root system and its subsystem) listed below such that the group $ G(\Delta ,R)$ is (up to a torus) a Levi subgroup of the parabolic subgroup with Abelian unipotent radical. Namely, it is shown that for any overgroup $ H$ of this sort, there exists a unique pair of ideals $ \sigma $ of the ring $ R$ with $ E(\Phi ,\Delta ,R,\sigma )\le H\le N_{G(\Phi ,R)}(E(\Phi ,\Delta ,R,\sigma ))$.
Keywords: Chevalley groups, commutative rings, half-spinor group, exceptional groups, Levi subgroup, subgroup lattice, nilpotent structure of K1.
@article{AA_2019_31_6_a2,
     author = {P. B. Gvozdevsky},
     title = {Overgroups of {Levi} subgroups {I.} {The} case of abelian unipotent radical},
     journal = {Algebra i analiz},
     pages = {79--121},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_6_a2/}
}
TY  - JOUR
AU  - P. B. Gvozdevsky
TI  - Overgroups of Levi subgroups I. The case of abelian unipotent radical
JO  - Algebra i analiz
PY  - 2019
SP  - 79
EP  - 121
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_6_a2/
LA  - ru
ID  - AA_2019_31_6_a2
ER  - 
%0 Journal Article
%A P. B. Gvozdevsky
%T Overgroups of Levi subgroups I. The case of abelian unipotent radical
%J Algebra i analiz
%D 2019
%P 79-121
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_6_a2/
%G ru
%F AA_2019_31_6_a2
P. B. Gvozdevsky. Overgroups of Levi subgroups I. The case of abelian unipotent radical. Algebra i analiz, Tome 31 (2019) no. 6, pp. 79-121. http://geodesic.mathdoc.fr/item/AA_2019_31_6_a2/

[1] Borevich Z. I., Vavilov N. A., “O podgruppakh polnoi lineinoi gruppy nad kommutativnym koltsom”, Dokl. AN SSSR, 267:4 (1982), 777–778 | MR | Zbl

[2] Borevich Z. I., Vavilov N. A., “Raspolozhenie kodgrupp, soderzhaschikh gruppu kletochno diagonalnykh matrits, v polnoi lineinoi gruppe nad koltsom”, Izv. vuzov. Mat., 1982, no. 11, 12–16 | Zbl

[3] Borevich Z. I., Vavilov N. A., “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. Mat. in-ta AN SSSR, 165 (1984), 24–42

[4] Borevich Z. I., Vavilov N. A., Narkevich V., “O podgruppakh polnoi lineinoi gruppy nad dedekindovym koltsom”, Zap. nauch. semin. LOMI, 94, 1979, 13–20 | Zbl

[5] Vavilov N. A., “Podgruppy polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschie gruppu kletochno-diagonalnykh matrits”, Vestn. Leningr. un-ta. Ser. 1. Mat., mekh., astronom., 1983, no. 1, 16–21 | Zbl

[6] Vavilov N. A., “O podgruppakh rasschepimykh ortogonalnykh grupp nad koltsom”, Sib. mat. zh., 29:4 (1988), 537–547 | MR | Zbl

[7] Vavilov N. A., “O podgruppakh rasschepimykh klassicheskikh grupp”, Tr. Mat. in-ta AN SSSR, 183, 1993, 29–42

[8] Vavilov N. A., “O podgruppakh rasschepimykh ortogonalnykh grupp nad kommutativnym koltsom”, Zap. nauch. semin. POMI, 281, 2001, 35–59 | Zbl

[9] Vavilov N. A., “Kak uvidet znaki strukturnykh konstant”, Algebra i analiz, 19:4 (2007), 34–68

[10] Vavilov N. A., “O podgruppakh simplekticheskoi gruppy, soderzhaschikh subsystem subgroup”, Zap. nauchn. semin. POMI, 349, 2007, 5–29

[11] Vavilov N. A., “Numerologiya kvadratnykh uravnenii”, Algebra i analiz, 20:5 (2008), 9–40

[12] Vavilov N. A., Gavrilovich M. R., “$A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $E_6$ i $E_7$”, Algebra i analiz, 19:4 (2004), 54–87

[13] Vavilov N. A., Stepanov A. V., “Nadgruppy poluprostykh grupp”, Vestn. SamGU. Estestvennonauchn. ser., 2008:3, 51–95 | MR | Zbl

[14] Vavilov N. A., Schegolev A. V., “Nadgruppy system subgroups v isklyuchitelnykh gruppakh: urovni”, Zap. nauch. semin. POMI, 400, 2012, 70–126

[15] Kazakevich V. G., Stavrova A. K., “Podgruppy, normalizuemye kommutantom podgruppy Levi”, Zap. nauch. semin. POMI, 319, 2004, 199–215 | Zbl

[16] Luzgarev A. Yu., “Ne zavisyaschie ot kharakteristiki invarianty chetvertoi stepeni dlya ${G}({E}_7, {R})$”, Vestn. S.-Peterburg. un-ta. Ser. 1. Mat., mekh., astronom., 2013:1, 43–50 | MR

[17] Stepanov A. V., Strukturnaya teoriya i podgruppy grupp Shevalle nad koltsami, Doktor. diss., Sankt-Petreburg, 2014

[18] Schegolev A. V., “Nadgruppy blochno-diagonalnykh podgrupp giperbolicheskoi unitarnoi gruppy nad kvazi-konechnym koltsom: Osnovnye rezultaty”, Zap. nauch. semin. POMI, 443, 2016, 222–233

[19] Schegolev A. V., “Nadgruppy elementarnoi blochno-diagonalnoi podgruppy klassicheskoi simplekticheskoi gruppy nad proizvolnym kommutativnym koltsom”, Algebra i analiz, 30:6 (2018), 147–199

[20] Aschbacher M., “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[21] Bak A., Hazrat R., Vavilov N., “Localization-completion strikes again: relative $K_1$ is nilpotent”, J. Pure Appl. Algebra, 213:6 (2009), 1075–1085 | DOI | MR | Zbl

[22] Borel A., “Properties and linear representations on chevalley groups”, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math., 131, Springer, Berlin, 1970, 1–55 | DOI | MR

[23] Chevalley C., “Certain schemas de groupes semi-simples”, Sem. Bourbaki, 6, Soc. Math. France, Paris, 1995, 219–234 | MR

[24] Demazure M., Gabriel P., Introduction to algebraic geometry and algebraic groups, North-Holland Math. Stud., 39, North-Holland Publ. Co., Amsterdam, 1980 | MR | Zbl

[25] Luzgarev A., Equations determining the orbit of the highest weight vector in the adjoint representation, 2014, 13 pp., arXiv: 1001.1105

[26] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semisimples déployés”, Ann. Sci. École Norm. Sup. $(4)$, 2:1 (1969), 1–62 | DOI | MR | Zbl

[27] Plotkin E. B., Semenov A. A., Vavilov N. A., “Visual basic representations\textup: an atla”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[28] Shchegolev A., Overgroups of elementary block-diagonal subgroups in even unitary groups over quasi-finite rings, Ph.D. thesis, Fak. Math. Univ., Bielefeld, 2015

[29] Stavrova A. K., “Normal structure of maximal parabolic subgroups in Chevalley groups over rings”, Algebra Colloq., 16:4 (2009), 631–648 | DOI | MR | Zbl

[30] Stein M. R., “Stability theorems for ${K}_1, {K}_2$ and related functors modeled on Chevalley groups”, Japan J. Math., 4:1 (1978), 77–108 | DOI | MR | Zbl

[31] Stepanov A. V., “Subring subgroups in Chevalley groups with doubly laced root systems”, J. Algebra, 362 (2012), 12–29 | DOI | MR | Zbl

[32] Stepanov A. V., “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl

[33] Tits J., “Systemes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris Sér. A-B, 283:9 (1976), A693–A695 | MR

[34] Vavilov N. A., “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[35] Wang Dengyin, “Overgroups of Levi subgroups $L_{\alpha}$ ($n_\alpha=1$) in Chevalley groups $G(\Phi,R)$”, Chinese Adv. Math., 31:4 (2002), 148–152 | MR | Zbl

[36] Wang Dengyin, Li Shangzhi, “Overgroups of Levi subgroups in parabolic subgroups in Chevalley groups”, Acta. Math. Sinica, 43:5 (2000), 931–936 | MR | Zbl