On holomorphic realizations of 5-dimensional Lie algebras
Algebra i analiz, Tome 31 (2019) no. 6, pp. 1-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Realizations are studied for a particular block of 5-dimensional Lie algebras (within the well-known Mubarakzyanov classification) in the form of algebras of holomorphic vector fields on homogeneous real hypersurfaces of the 3-dimensional complex space. All (locally) holomorphically homogeneous and Levi nondegenerate real hypersurfaces associated with algebras in the block in question are described. A majority of such manifolds are holomorphic images of tubular hypersurfaces with affine homogeneous base. At the same time, two new holomorphically homogeneous hypersurfaces are obtained that do not reduce to tubes, have sign-indefinite Levi form, and are algebraic surfaces of degree 3.
Keywords: complex space, homogeneous manifold, vector field, Lie algebra, holomorphic transformation, classification of 5-dimensional Lie algebras.
@article{AA_2019_31_6_a0,
     author = {R. S. Akopyan and A. V. Loboda},
     title = {On holomorphic realizations of 5-dimensional {Lie} algebras},
     journal = {Algebra i analiz},
     pages = {1--37},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_6_a0/}
}
TY  - JOUR
AU  - R. S. Akopyan
AU  - A. V. Loboda
TI  - On holomorphic realizations of 5-dimensional Lie algebras
JO  - Algebra i analiz
PY  - 2019
SP  - 1
EP  - 37
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_6_a0/
LA  - ru
ID  - AA_2019_31_6_a0
ER  - 
%0 Journal Article
%A R. S. Akopyan
%A A. V. Loboda
%T On holomorphic realizations of 5-dimensional Lie algebras
%J Algebra i analiz
%D 2019
%P 1-37
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_6_a0/
%G ru
%F AA_2019_31_6_a0
R. S. Akopyan; A. V. Loboda. On holomorphic realizations of 5-dimensional Lie algebras. Algebra i analiz, Tome 31 (2019) no. 6, pp. 1-37. http://geodesic.mathdoc.fr/item/AA_2019_31_6_a0/

[1] Loboda A. V., “Odnorodnye strogo psevdo-vypuklye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Mat. sb., 192:12 (2001), 3–24 | DOI | Zbl

[2] Loboda A. V., “Ob opredelenii odnorodnoi strogo psevdo-vypukloi giperpoverkhnosti po koeffitsientam ee normalnogo uravneniya”, Mat. zametki, 73:3 (2003), 419–423 | DOI | MR | Zbl

[3] Doubrov V., Medvedev A., The D., “Homogeneous Levi non-degenerate hypersurfaces in $ \Bbb C^3 $”, 7 Nov. 2017, arXiv: 1711.02389v1 [math.DG] | Zbl

[4] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension $5$”, Acta Math., 201 (2008), 1–82 | DOI | MR | Zbl

[5] Akopyan R. S., Loboda A. V., “O golomorfnykh realizatsiyakh nilpotentnykh algebr Li”, Funkts. anal. i ego pril., 53:2 (2019), 59–63 | DOI | MR

[6] Mubarakzyanov G. M., “Klassifikatsiya veschestvennykh struktur algebr Li pyatogo poryadka”, Izv. vuzov. Mat., 1963, no. 3, 99–106 | MR | Zbl

[7] Beloshapka V. K., Kossovskiy I. G., “Homogeneous hypersurfaces in $ \Bbb C^3 $, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl

[8] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izv. vuzov. Mat., 1963, no. 1, 114–123 | MR | Zbl

[9] Bishop R., Krittenden R., Geometriya mnogoobrazii, Mir, M., 1963

[10] Cartan E., “Sur la geometrie pseudoconforme des hypersurfaces de deux variables complexes”, Ann. Math. Pura Appl., 11:1 (1933), 17–90 | DOI | MR

[11] Doubrov B., Komrakov B., Rabinovich M., “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and topology of submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), World Sci. Publ., River Edge, NJ, 1996, 168–178 | MR | Zbl

[12] Shabat B. V., Vvedenie v kompleksnyi analiz, v. 2, Nauka, M., 1985

[13] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Tr. Mat. in-ta RAN, 235, 2001, 114–142 | Zbl

[14] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR

[15] Ezhov V. V., Loboda A. V., Shmalts G., “Kanonicheskaya forma mnogochlena chetvertoi stepeni v normalnom uravnenii veschestvennoi giperpoverkhnosti v $\mathbb{C}^3 $”, Mat. zametki, 66:4 (1999), 624–626 | DOI | Zbl

[16] Lagno V. I., Spichak S. V., Stognii V. I., Simmetriinyi analiz uravnenii evolyutsionnogo tipa, Inst. komp. issled., Moskva–Izhevsk, 2004