Oka principle on the maximal ideal space of $ H^\infty$
Algebra i analiz, Tome 31 (2019) no. 5, pp. 24-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Grauert and Ramspott theorems constitute the foundation of the Oka principle on Stein spaces. In this paper, similar results are established on the maximal ideal space $ M(H^\infty )$ of the Banach algebra  $ H^\infty $ of bounded holomorphic functions on the open unit disk $ \mathbb{D}\subset \mathbb{C}$. The results are illustrated by some examples and applications to the theory of operator-valued $ H^\infty $ functions.
Keywords: oka principle, maximal ideal space of $H^\infty$, Grauert theorem, Ramspott theorem.
@article{AA_2019_31_5_a1,
     author = {A. Brudnyi},
     title = {Oka principle on the maximal ideal space of $ H^\infty$},
     journal = {Algebra i analiz},
     pages = {24--89},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_5_a1/}
}
TY  - JOUR
AU  - A. Brudnyi
TI  - Oka principle on the maximal ideal space of $ H^\infty$
JO  - Algebra i analiz
PY  - 2019
SP  - 24
EP  - 89
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_5_a1/
LA  - ru
ID  - AA_2019_31_5_a1
ER  - 
%0 Journal Article
%A A. Brudnyi
%T Oka principle on the maximal ideal space of $ H^\infty$
%J Algebra i analiz
%D 2019
%P 24-89
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_5_a1/
%G ru
%F AA_2019_31_5_a1
A. Brudnyi. Oka principle on the maximal ideal space of $ H^\infty$. Algebra i analiz, Tome 31 (2019) no. 5, pp. 24-89. http://geodesic.mathdoc.fr/item/AA_2019_31_5_a1/

[1] Arens R., “Extension of functions on fully normal spaces”, Pacific J. Math., 2:1 (1952), 11–22 | DOI | MR | Zbl

[2] Arens R., “The group of invertible elements of a commutative Banach algebra”, Studia Math. (Ser. Specjal.) Zeszyt, 1 (1963), 21–23 | MR | Zbl

[3] Agler J., McCarthy J., “Distinguished varieties”, Acta Math., 194:2 (2005), 133–153 | DOI | MR | Zbl

[4] Agler J., McCarthy J., “Norm preserving extensions of holomorphic functions from subvarieties of the bidisc”, Ann. of Math. (2), 157:1 (2003), 289–312 | DOI | MR | Zbl

[5] Brudnyi A., Kinzebulatov D., “Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds. I”, Rev. Mat. Iberoam., 31:3 (2015), 989–1032 | DOI | MR | Zbl

[6] Brudnyi A., Kinzebulatov D., “Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds. II”, Rev. Mat. Iberoam., 31:4 (2015), 1167–1230 | DOI | MR | Zbl

[7] Bourgain J., Reinov O., “On the approximation properties for the space $H^\infty$”, Math. Nachr., 122 (1983), 19–27 | DOI | MR

[8] Brudnyi A., Sasane A., “Sufficient conditions for the projective freeness of Banach algebras”, J. Funct. Anal., 257:12 (2009), 4003–4014 | DOI | MR | Zbl

[9] Brudnyi A., “Topology of the maximal ideal space of $H^\infty$”, J. Func. Anal., 189:1 (2002), 21–52 | DOI | MR | Zbl

[10] Brudnyi A., “Holomorphic functions of slow growth on coverings of pseudoconvex domains in Stein manifolds”, Compos. Math., 142:4 (2006), 1018–1038 | DOI | MR | Zbl

[11] Brudnyi A., “Banach-valued holomorphic functions on the maximal ideal space of $H^\infty$”, Invent. Math., 193 (2013), 187–227 | DOI | MR | Zbl

[12] Brudnyi A., “Holomorphic Banach vector bundles on the maximal ideal space of $H^\infty$ and the operator corona problem of Sz.-Nagy”, Adv. Math., 232:1 (2013), 121–141 | DOI | MR | Zbl

[13] Brudnyi A., “On the completion problem for algebra $H^\infty$”, J. Funct. Anal., 266:7 (2014), 4293–4313 | DOI | MR | Zbl

[14] Brudnyi A., “BMO functions as harmonic sections of flat bundles on the maximal ideal space of $H^{\infty}$”, Integral Equations Operator Theory, 83:1 (2015), 61–72 | DOI | MR | Zbl

[15] Brudnyi A., “Grauert and Ramspott type theorems on the maximal ideal space of $H^\infty$”, C. R. Math. Rep. Acad. Sci. Soc. R. Can., 39:4 (2017), 117–133 | MR | Zbl

[16] Bungart L., “On analytic fiber bundles. I. Holomorphic fiber bundles with infinite dimensional fibers”, Topology, 7 (1967), 55–68 | DOI | MR

[17] Carleson L., “Interpolations by bounded analytic functions and the corona theorem”, Ann. of Math. (2), 76 (1962), 547–559 | DOI | MR | Zbl

[18] Cartan H., “Espaces fibrés analytiques”, Symposium Internacional de Topologia Algebraica (Univ. Nac. Aut. Mexico, Mexico, 1956), 97–121 | MR | Zbl

[19] Douady A., “Un espace de Banach dont le groupe linéaire n'est pas connexe”, Indag. Math., 27 (1965), 787–789 | DOI | MR

[20] Forstnerič F., Lárusson F., “Survey of Oka theory”, New York J. Math., 17A (2011), 11–38 | MR | Zbl

[21] Gamelin T. W., “Embedding Riemann surfaces in maximal ideal spaces”, J. Funct. Anal., 2 (1968), 123–146 | DOI | MR | Zbl

[22] Grothendieck A., Produits tensoriels toplogiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, no. 1, 2, 1955 | MR

[23] Garnett J. B., Bounded analytic functions, Pure Appl. Math., 97, Acad. Press, New York, 1981 | MR

[24] Grauert H., Remmert R., Theory of Stein spaces, Grundlehren Math. Wiss., 236, Springer-Verlag, Berlin, 1979 | DOI | MR | Zbl

[25] Grauert H., “Analytische Faserungen über holomorph-vollständigen Räumen”, Math. Ann., 135 (1958), 263–273 | DOI | MR | Zbl

[26] Hoffman K., “Bounded analytic functions and Gleason parts”, Ann. of Math. (2), 86 (1967), 74–111 | DOI | MR | Zbl

[27] Hu S.-T., Homotopy theory, Pure Appl. Math., 8, Acad. Press, New York, 1959 | MR | Zbl

[28] Hu S.-T., “Mappings of a normal space into an absolute neighborhood retract”, Trans. Amer. Math. Soc., 64 (1948), 336–358 | DOI | MR | Zbl

[29] Husemoller D., Fibre bundles, Grad. Texts in Math., 20, Third ed., Springer-Verlag, New York, 1994 | DOI | MR

[30] Leiterer J., “An implicit function theorem in Banach spaces”, Ann. Polon. Math., 46 (1985), 171–175 | DOI | MR | Zbl

[31] Lin V. Ya., “Golomorfnye rassloeniya i mnogoznachnye funktsii ot elementov banakhovoi algebry”, Funkts. anal. i ego pril., 7:2 (1973), 43–51 | MR | Zbl

[32] Lindenstrauss J., “On complemented subspaces of $m$”, Israel J. Math., 5 (1967), 153–156 | DOI | MR | Zbl

[33] Maissen B., “Lie-Gruppen mit Banachräumen als Parameterräume”, Acta Math., 108 (1962), 229–269 | DOI | MR

[34] Mityagin B. S., “Gomotopicheskaya struktura lineinoi gruppy banakhova prostranstva”, Uspekhi mat. nauk, 25:5 (1970), 63–106 | MR | Zbl

[35] Mardešić S., “On covering dimension and inverse limits of compact spaces”, Illinois J. Math., 4 (1960), 278–291 | DOI | MR | Zbl

[36] Mortini R., Sasane A., Wick B. D., “The sorona theorem and stable rank for the algebra $\mathbb{C} +BH^\infty$”, Houston J. Math., 36:1 (2010), 289–302 | MR | Zbl

[37] Nagami K., Dimension theory, Pure Appl. Math., 37, Acad. Press, New York, 1970 | MR

[38] Nikolski N. K., Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[39] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[40] Ostrand F. A., “Covering dimension in general spaces”, General Topology Appl., 1:3 (1971), 209–221 | DOI | MR | Zbl

[41] Onischik A. L., Vinberg E. B., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[42] Palais R. S., “Homotopy theory of infinite dimensional manifolds”, Topology, 5 (1966), 1–16 | DOI | MR | Zbl

[43] Pełczyński A., “Projections in certain Banach spaces”, Studia Math., 19 (1960), 209–228 | DOI | MR

[44] Raeburn I., “The relationship between a commutative Banach algebra and its maximal ideal space”, J. Funct. Anal., 25:4 (1977), 366–390 | DOI | MR | Zbl

[45] Ramspott K. J., “Stetige und holomorphe Schnitte in Bündeln mit homogener Faser”, Math. Z., 89 (1965), 234–246 | DOI | MR | Zbl

[46] Royden H. L., “Function algebras”, Bull. Amer. Math. Soc., 69:3 (1963), 281–298 | DOI | MR | Zbl

[47] Spanier E., Algebraic topology, McGraw-Hill Book Co., New York, 1966 | MR | Zbl

[48] Sz.-Nagy B., “A problem on operator valued bounded analytic functions”, Zap. nauch. semin. LOMI, 81, 1978, 99

[49] Suárez D., “Čech cohomology and covering dimension for the $H^\infty$ maximal ideal space”, J. Funct. Anal., 123:2 (1994), 233–263 | DOI | MR

[50] Suárez D., “Trivial Gleason parts and the topological stable rank of $H^\infty$”, Amer. J. Math., 118:4 (1996), 879–904 | DOI | MR

[51] Treil S. R., “Geometric methods in spectral theory of vector-valued functions: some recent results”, Toeplitz operators and spectral function theory, Oper. Theory Adv. Appl., 42, Birkhäuser, Basel, 1989, 209–280 | DOI | MR

[52] Treil S. R., “Unconditional bases of invariant subspaces of a contraction with finite defects”, Indiana Univ. Math. J., 46:4 (1997), 1021–1054 | DOI | MR | Zbl

[53] Treil S., “Lower bounds in the matrix corona theorem and the codimension one conjecture”, Geom. Funct. Anal., 14:5 (2004), 1118–1133 | DOI | MR | Zbl

[54] Treil S., “An operator Corona theorem”, Indiana Univ. Math. J., 53:6 (2004), 1763–1780 | DOI | MR

[55] Treil S., “The stable rank of algebra $H^\infty$ equals $1$”, J. Funct. Anal., 109:1 (1992), 130–154 | DOI | MR | Zbl

[56] Treil S., Wick B., “Analytic projections, Corona Problem and geometry of holomorphic vector bundles”, J. Amer. Math. Soc., 22:1 (2009), 55–76 | DOI | MR | Zbl

[57] Vitse P., “A tensor product approach to the operator corona theorem”, J. Operator Theory, 50:1 (2003), 179–208 | MR | Zbl

[58] Vidyasagar M., Control system synthesis. A factorization approach, MIT Press Ser. Signal Proces., Optim., Control, 7, MIT Press, Cambridge, MA, 1985 | MR | Zbl

[59] Weil A., “L'intégrale de Cauchy et les fonctions de plusieurs variables”, Math. Ann., 111:1 (1935), 178–182 | DOI | MR