Oka principle on the maximal ideal space of $ H^\infty$
Algebra i analiz, Tome 31 (2019) no. 5, pp. 24-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical Grauert and Ramspott theorems constitute the foundation of the Oka principle on Stein spaces. In this paper, similar results are established on the maximal ideal space $ M(H^\infty )$ of the Banach algebra $ H^\infty $ of bounded holomorphic functions on the open unit disk $ \mathbb{D}\subset \mathbb{C}$. The results are illustrated by some examples and applications to the theory of operator-valued $ H^\infty $ functions.
Keywords: oka principle, maximal ideal space of $H^\infty$, Grauert theorem, Ramspott theorem.
@article{AA_2019_31_5_a1,
     author = {A. Brudnyi},
     title = {Oka principle on the maximal ideal space of $ H^\infty$},
     journal = {Algebra i analiz},
     pages = {24--89},
     year = {2019},
     volume = {31},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_5_a1/}
}
TY  - JOUR
AU  - A. Brudnyi
TI  - Oka principle on the maximal ideal space of $ H^\infty$
JO  - Algebra i analiz
PY  - 2019
SP  - 24
EP  - 89
VL  - 31
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_5_a1/
LA  - ru
ID  - AA_2019_31_5_a1
ER  - 
%0 Journal Article
%A A. Brudnyi
%T Oka principle on the maximal ideal space of $ H^\infty$
%J Algebra i analiz
%D 2019
%P 24-89
%V 31
%N 5
%U http://geodesic.mathdoc.fr/item/AA_2019_31_5_a1/
%G ru
%F AA_2019_31_5_a1
A. Brudnyi. Oka principle on the maximal ideal space of $ H^\infty$. Algebra i analiz, Tome 31 (2019) no. 5, pp. 24-89. http://geodesic.mathdoc.fr/item/AA_2019_31_5_a1/

[1] Arens R., “Extension of functions on fully normal spaces”, Pacific J. Math., 2:1 (1952), 11–22 | DOI | MR | Zbl

[2] Arens R., “The group of invertible elements of a commutative Banach algebra”, Studia Math. (Ser. Specjal.) Zeszyt, 1 (1963), 21–23 | MR | Zbl

[3] Agler J., McCarthy J., “Distinguished varieties”, Acta Math., 194:2 (2005), 133–153 | DOI | MR | Zbl

[4] Agler J., McCarthy J., “Norm preserving extensions of holomorphic functions from subvarieties of the bidisc”, Ann. of Math. (2), 157:1 (2003), 289–312 | DOI | MR | Zbl

[5] Brudnyi A., Kinzebulatov D., “Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds. I”, Rev. Mat. Iberoam., 31:3 (2015), 989–1032 | DOI | MR | Zbl

[6] Brudnyi A., Kinzebulatov D., “Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds. II”, Rev. Mat. Iberoam., 31:4 (2015), 1167–1230 | DOI | MR | Zbl

[7] Bourgain J., Reinov O., “On the approximation properties for the space $H^\infty$”, Math. Nachr., 122 (1983), 19–27 | DOI | MR

[8] Brudnyi A., Sasane A., “Sufficient conditions for the projective freeness of Banach algebras”, J. Funct. Anal., 257:12 (2009), 4003–4014 | DOI | MR | Zbl

[9] Brudnyi A., “Topology of the maximal ideal space of $H^\infty$”, J. Func. Anal., 189:1 (2002), 21–52 | DOI | MR | Zbl

[10] Brudnyi A., “Holomorphic functions of slow growth on coverings of pseudoconvex domains in Stein manifolds”, Compos. Math., 142:4 (2006), 1018–1038 | DOI | MR | Zbl

[11] Brudnyi A., “Banach-valued holomorphic functions on the maximal ideal space of $H^\infty$”, Invent. Math., 193 (2013), 187–227 | DOI | MR | Zbl

[12] Brudnyi A., “Holomorphic Banach vector bundles on the maximal ideal space of $H^\infty$ and the operator corona problem of Sz.-Nagy”, Adv. Math., 232:1 (2013), 121–141 | DOI | MR | Zbl

[13] Brudnyi A., “On the completion problem for algebra $H^\infty$”, J. Funct. Anal., 266:7 (2014), 4293–4313 | DOI | MR | Zbl

[14] Brudnyi A., “BMO functions as harmonic sections of flat bundles on the maximal ideal space of $H^{\infty}$”, Integral Equations Operator Theory, 83:1 (2015), 61–72 | DOI | MR | Zbl

[15] Brudnyi A., “Grauert and Ramspott type theorems on the maximal ideal space of $H^\infty$”, C. R. Math. Rep. Acad. Sci. Soc. R. Can., 39:4 (2017), 117–133 | MR | Zbl

[16] Bungart L., “On analytic fiber bundles. I. Holomorphic fiber bundles with infinite dimensional fibers”, Topology, 7 (1967), 55–68 | DOI | MR

[17] Carleson L., “Interpolations by bounded analytic functions and the corona theorem”, Ann. of Math. (2), 76 (1962), 547–559 | DOI | MR | Zbl

[18] Cartan H., “Espaces fibrés analytiques”, Symposium Internacional de Topologia Algebraica (Univ. Nac. Aut. Mexico, Mexico, 1956), 97–121 | MR | Zbl

[19] Douady A., “Un espace de Banach dont le groupe linéaire n'est pas connexe”, Indag. Math., 27 (1965), 787–789 | DOI | MR

[20] Forstnerič F., Lárusson F., “Survey of Oka theory”, New York J. Math., 17A (2011), 11–38 | MR | Zbl

[21] Gamelin T. W., “Embedding Riemann surfaces in maximal ideal spaces”, J. Funct. Anal., 2 (1968), 123–146 | DOI | MR | Zbl

[22] Grothendieck A., Produits tensoriels toplogiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, no. 1, 2, 1955 | MR

[23] Garnett J. B., Bounded analytic functions, Pure Appl. Math., 97, Acad. Press, New York, 1981 | MR

[24] Grauert H., Remmert R., Theory of Stein spaces, Grundlehren Math. Wiss., 236, Springer-Verlag, Berlin, 1979 | DOI | MR | Zbl

[25] Grauert H., “Analytische Faserungen über holomorph-vollständigen Räumen”, Math. Ann., 135 (1958), 263–273 | DOI | MR | Zbl

[26] Hoffman K., “Bounded analytic functions and Gleason parts”, Ann. of Math. (2), 86 (1967), 74–111 | DOI | MR | Zbl

[27] Hu S.-T., Homotopy theory, Pure Appl. Math., 8, Acad. Press, New York, 1959 | MR | Zbl

[28] Hu S.-T., “Mappings of a normal space into an absolute neighborhood retract”, Trans. Amer. Math. Soc., 64 (1948), 336–358 | DOI | MR | Zbl

[29] Husemoller D., Fibre bundles, Grad. Texts in Math., 20, Third ed., Springer-Verlag, New York, 1994 | DOI | MR

[30] Leiterer J., “An implicit function theorem in Banach spaces”, Ann. Polon. Math., 46 (1985), 171–175 | DOI | MR | Zbl

[31] Lin V. Ya., “Golomorfnye rassloeniya i mnogoznachnye funktsii ot elementov banakhovoi algebry”, Funkts. anal. i ego pril., 7:2 (1973), 43–51 | MR | Zbl

[32] Lindenstrauss J., “On complemented subspaces of $m$”, Israel J. Math., 5 (1967), 153–156 | DOI | MR | Zbl

[33] Maissen B., “Lie-Gruppen mit Banachräumen als Parameterräume”, Acta Math., 108 (1962), 229–269 | DOI | MR

[34] Mityagin B. S., “Gomotopicheskaya struktura lineinoi gruppy banakhova prostranstva”, Uspekhi mat. nauk, 25:5 (1970), 63–106 | MR | Zbl

[35] Mardešić S., “On covering dimension and inverse limits of compact spaces”, Illinois J. Math., 4 (1960), 278–291 | DOI | MR | Zbl

[36] Mortini R., Sasane A., Wick B. D., “The sorona theorem and stable rank for the algebra $\mathbb{C} +BH^\infty$”, Houston J. Math., 36:1 (2010), 289–302 | MR | Zbl

[37] Nagami K., Dimension theory, Pure Appl. Math., 37, Acad. Press, New York, 1970 | MR

[38] Nikolski N. K., Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[39] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[40] Ostrand F. A., “Covering dimension in general spaces”, General Topology Appl., 1:3 (1971), 209–221 | DOI | MR | Zbl

[41] Onischik A. L., Vinberg E. B., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[42] Palais R. S., “Homotopy theory of infinite dimensional manifolds”, Topology, 5 (1966), 1–16 | DOI | MR | Zbl

[43] Pełczyński A., “Projections in certain Banach spaces”, Studia Math., 19 (1960), 209–228 | DOI | MR

[44] Raeburn I., “The relationship between a commutative Banach algebra and its maximal ideal space”, J. Funct. Anal., 25:4 (1977), 366–390 | DOI | MR | Zbl

[45] Ramspott K. J., “Stetige und holomorphe Schnitte in Bündeln mit homogener Faser”, Math. Z., 89 (1965), 234–246 | DOI | MR | Zbl

[46] Royden H. L., “Function algebras”, Bull. Amer. Math. Soc., 69:3 (1963), 281–298 | DOI | MR | Zbl

[47] Spanier E., Algebraic topology, McGraw-Hill Book Co., New York, 1966 | MR | Zbl

[48] Sz.-Nagy B., “A problem on operator valued bounded analytic functions”, Zap. nauch. semin. LOMI, 81, 1978, 99

[49] Suárez D., “Čech cohomology and covering dimension for the $H^\infty$ maximal ideal space”, J. Funct. Anal., 123:2 (1994), 233–263 | DOI | MR

[50] Suárez D., “Trivial Gleason parts and the topological stable rank of $H^\infty$”, Amer. J. Math., 118:4 (1996), 879–904 | DOI | MR

[51] Treil S. R., “Geometric methods in spectral theory of vector-valued functions: some recent results”, Toeplitz operators and spectral function theory, Oper. Theory Adv. Appl., 42, Birkhäuser, Basel, 1989, 209–280 | DOI | MR

[52] Treil S. R., “Unconditional bases of invariant subspaces of a contraction with finite defects”, Indiana Univ. Math. J., 46:4 (1997), 1021–1054 | DOI | MR | Zbl

[53] Treil S., “Lower bounds in the matrix corona theorem and the codimension one conjecture”, Geom. Funct. Anal., 14:5 (2004), 1118–1133 | DOI | MR | Zbl

[54] Treil S., “An operator Corona theorem”, Indiana Univ. Math. J., 53:6 (2004), 1763–1780 | DOI | MR

[55] Treil S., “The stable rank of algebra $H^\infty$ equals $1$”, J. Funct. Anal., 109:1 (1992), 130–154 | DOI | MR | Zbl

[56] Treil S., Wick B., “Analytic projections, Corona Problem and geometry of holomorphic vector bundles”, J. Amer. Math. Soc., 22:1 (2009), 55–76 | DOI | MR | Zbl

[57] Vitse P., “A tensor product approach to the operator corona theorem”, J. Operator Theory, 50:1 (2003), 179–208 | MR | Zbl

[58] Vidyasagar M., Control system synthesis. A factorization approach, MIT Press Ser. Signal Proces., Optim., Control, 7, MIT Press, Cambridge, MA, 1985 | MR | Zbl

[59] Weil A., “L'intégrale de Cauchy et les fonctions de plusieurs variables”, Math. Ann., 111:1 (1935), 178–182 | DOI | MR