Generalized power central group identities in almost subnormal subgroups of $ \operatorname{GL}_n(D)$
Algebra i analiz, Tome 31 (2019) no. 4, pp. 225-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to almost subnormal subgroups of the general linear group $ \mathrm {GL}_n(D)$ of degree $ n\ge 1$ over a division ring $ D$ that satisfy a generalized power central group identity.
Keywords: division ring, skew linear group, almost subnormal subgroup, free subgroup, generalized power central group identity.
@article{AA_2019_31_4_a6,
     author = {B. X. Hai and H. V. Khanh and M. H. Bien},
     title = {Generalized power central group identities in almost subnormal subgroups of $ \operatorname{GL}_n(D)$},
     journal = {Algebra i analiz},
     pages = {225--239},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_4_a6/}
}
TY  - JOUR
AU  - B. X. Hai
AU  - H. V. Khanh
AU  - M. H. Bien
TI  - Generalized power central group identities in almost subnormal subgroups of $ \operatorname{GL}_n(D)$
JO  - Algebra i analiz
PY  - 2019
SP  - 225
EP  - 239
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_4_a6/
LA  - en
ID  - AA_2019_31_4_a6
ER  - 
%0 Journal Article
%A B. X. Hai
%A H. V. Khanh
%A M. H. Bien
%T Generalized power central group identities in almost subnormal subgroups of $ \operatorname{GL}_n(D)$
%J Algebra i analiz
%D 2019
%P 225-239
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_4_a6/
%G en
%F AA_2019_31_4_a6
B. X. Hai; H. V. Khanh; M. H. Bien. Generalized power central group identities in almost subnormal subgroups of $ \operatorname{GL}_n(D)$. Algebra i analiz, Tome 31 (2019) no. 4, pp. 225-239. http://geodesic.mathdoc.fr/item/AA_2019_31_4_a6/

[1] Akbari S., Arian-Nejad M., “Left Artinian algebraic algebras”, Algebra Colloq., 8:4 (2001), 463–470

[2] Bien M. H., “Subnormal subgroups in division rings with generalized power central group identities”, Arch. Math. (Basel), 106:4 (2016), 315–321

[3] Bien M. H., “On some subgroups of $D^*$ which satisfy a generalized group identity”, Bull. Korean Math. Soc., 52:4 (2015), 1353–1363

[4] Bien M. H., Dung D. H., “On normal subgroups of division rings which are radical over a proper division subring”, Studia Sci. Math. Hungar., 51:2 (2014), 231–242

[5] Chiba K., “Skew fields with a nontrivial generalised power central rational identity”, Bull. Austral. Math. Soc., 49:1 (1994), 85–90

[6] Chiba K., “Free subgroups and free subsemigroups of division rings”, J. Algebra, 184:2 (1996), 570–574

[7] Cohn P. M., Free rings and their relations, London Math. Soc. Monogr., 2, Acad. Press, London, 1971

[8] Deo T. T., Bien M. H., Hai B. X., “On weakly locally finite division rings”, Acta Math. Vietnam, 44:2 (2019), 553–569

[9] Deo T. T., Bien M. H., Hai B. X., “On division subrings normalized by almost subnormal subgroups in division rings”, Period. Math. Hung., 2019 (to appear); 19 Feb 2019, arXiv: 1801.01271v2 [math.RA]

[10] Dung T. H., “On almost subnormal subgroups and maximal subgroups in skew linear groups”, Int. Electron. J. Algebra, 25 (2019), 35–42

[11] Gonçalves J. Z., Mandel A., Are there free groups in division rings?, Israel J. Math., 53:1 (1986), 69–80

[12] Gonçalves J. Z., Shirvani M., “Algebraic elements as free factors in simple Artinian rings”, Contemp. Math, 499, Amer. Math. Soc., Providence, RI, 2008, 121–125

[13] Golubchik I. Z., Mikhalev A. V., “Obobschennye gruppovye tozhdestva v klassicheskikh gruppakh”, Zap. nauch. semin. LOMI, 114, 1982, 96–119

[14] Hai B. X., Khanh H. V., “Free subgroups in maximal subgroups of skew linear groups”, Int. J. Algebra Comput., 29:3 (2019), 603–614 | DOI

[15] Hartley B., “Free groups in normal subgroups of unit groups and arithmetic groups”, Contemp. Math., 93, Amer. Math. Soc., Providence, RI, 1989, 173–177

[16] Herstein I. N., Procesi C., Schacher M., “Algebraic valued functions on noncommutative rings”, J. Algebra, 36:1 (1975), 128–150

[17] Herstein I. N., “Multiplicative commutators in division rings”, Israel J. Math., 31:2 (1978), 180–188

[18] Kurosh A. G., “Problemy teorii kolets, svyazannye s problemoi Bernsaida o periodicheskikh gruppakh”, Izv. AN SSSR. Ser. mat., 5:3 (1941), 233–240

[19] Lam T. Y., A first course in noncommutative rings, Grad. Texts in Math., 131, Springer-Verlag, New York, 1991

[20] Makar-Limanov L., Malcolmson P., “Words periodic over the center of a division rings”, Proc. Amer. Math. Soc., 93:4 (1985), 590–592

[21] Ngoc N. K., Bien M. H., Hai B. X., “Free subgroups in almost subnormal subgroups of general skew linear groups”, Algebra i analiz, 28:5 (2016), 220–235

[22] Reichstein Z., Vonessen N., “Free subgroups of division algebras”, Comm. Algebra, 23:6 (1995), 2181–2185

[23] Rotman J. J., Advanced modern algebra, v. I, Grad. Stud. Math., 165, 3rd ed., Amer. Math. Soc., Providence, RI, 2015

[24] Rowen L. H., Polynomial identities in ring theory, Pure Appl. Math., 84, Acad. Press, Inc., New York, 1980

[25] Stothers W. W., “Free subgroups of the free product of cyclic groups”, Math. Comp., 32:144 (1978), 1274–1280

[26] Tomanov G. M., “Obobschennye gruppovye tozhdestva v lineinykh gruppakh”, Mat. sb., 123:1 (1984), 35–49