Subgroups of Chevalley groups of types $ B_l$ and $ C_l$ containing the group over a subring, and corresponding carpets
Algebra i analiz, Tome 31 (2019) no. 4, pp. 198-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a continuation of the study of subgroups of the Chevalley group $ G_P(\Phi ,R)$ over a ring $ R$ with root system $ \Phi $ and weight lattice $ P$ that contain the elementary subgroup $ E_P(\Phi ,K)$ over a subring $ K$ of $ R$. A. Bak and A. V. Stepanov considered recently the case of the symplectic group (simply connected group with root system $ \Phi =C_l$) in characteristic $2$. In the current article, that result is extended to the case of $ \Phi =B_l$ and for the groups with other weight lattices. Like in the Ya. N. Nuzhin's work on the case where $ R$ is an algebraic extension of a nonperfect field $ K$ and $ \Phi $ is not simply laced, the description involves carpet subgroups parametrized by two additive subgroups. In the second part of the article, the Bruhat decomposition is established for these carpet subgroups and it is proved that they have a split saturated Tits system. As a corollary, it is shown that they are simple as abstract groups.
Keywords: classical groups, subgroup lattice, carpet subgroups, Bruhat decomposition.
@article{AA_2019_31_4_a5,
     author = {Ya. N. Nuzhin and A. V. Stepanov},
     title = {Subgroups of {Chevalley} groups of types $ B_l$ and $ C_l$ containing the group over a subring, and corresponding carpets},
     journal = {Algebra i analiz},
     pages = {198--224},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_4_a5/}
}
TY  - JOUR
AU  - Ya. N. Nuzhin
AU  - A. V. Stepanov
TI  - Subgroups of Chevalley groups of types $ B_l$ and $ C_l$ containing the group over a subring, and corresponding carpets
JO  - Algebra i analiz
PY  - 2019
SP  - 198
EP  - 224
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_4_a5/
LA  - ru
ID  - AA_2019_31_4_a5
ER  - 
%0 Journal Article
%A Ya. N. Nuzhin
%A A. V. Stepanov
%T Subgroups of Chevalley groups of types $ B_l$ and $ C_l$ containing the group over a subring, and corresponding carpets
%J Algebra i analiz
%D 2019
%P 198-224
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_4_a5/
%G ru
%F AA_2019_31_4_a5
Ya. N. Nuzhin; A. V. Stepanov. Subgroups of Chevalley groups of types $ B_l$ and $ C_l$ containing the group over a subring, and corresponding carpets. Algebra i analiz, Tome 31 (2019) no. 4, pp. 198-224. http://geodesic.mathdoc.fr/item/AA_2019_31_4_a5/

[1] Bashkirov E. L., “O podgruppakh spetsialnoi lineinoi gruppy stepeni $2$ nad beskonechnym polem”, Mat. cb., 187:2 (1996), 19–36

[2] Borevich Z. I., “O parabolicheskikh podgruppakh v lineinykh gruppakh nad polulokalnym koltsom”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1976, no. 13, 16–24

[3] Burbaki N., Gruppy i algebry Li. Gl. 7–8, Mir, 1978

[4] Vavilov N. A., Plotkin E. B., “Setevye podgruppy grupp Shevalle. I”, Zap. nauch. semin. LOMI, 94, 1979, 40–49

[5] Vavilov N. A., Plotkin E. B., “Setevye podgruppy grupp Shevalle. II”, Zap. nauch. semin. LOMI, 114, 1982, 62–76

[6] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985

[7] Kostrikin A. I., Unachev X. Ya., Syskin S. A., “Tretya shkola po teorii konechnykh grupp”, Uspekhi mat. nauk, 38:2 (1983), 236–238

[8] Levchuk V. M., “Zamechanie k teoreme L. Diksona”, Algebra i logika, 22:4 (1983), 421–434

[9] Levchuk V. M., “Parabolicheskie podgruppy nekotorykh $ABA$-grupp”, Mat. zametki, 31:4 (1982), 509–525

[10] Nuzhin Ya. N., “O gruppakh, zaklyuchennykh mezhdu gruppami lieva tipa nad razlichnymi polyami”, Algebra i logika, 22:5 (1983), 526–541

[11] Nuzhin Ya. N., “Gruppy, lezhaschie mezhdu gruppami Steinberga nad nesovershennymi polyami kharakteristiki $2$ i $3$”, Tr. IMM UrO RAN, 19, no. 3, 2013, 245–250

[12] Nuzhin Ya. N., “Gruppy, lezhaschie mezhdu gruppami Shevalle tipa $B_l,C_l,F_4,G_2$ nad nesovershennymi polyami kharakteristiki $2$ i $3$”, Sib. mat. zh., 54:2013, 157–162

[13] Nuzhin Ya. N., “Razlozhenie Levi dlya kovrovykh podgrupp grupp Shevalle nad polem”, Algebra i logika, 55:5 (2016), 558–570

[14] Nuzhin Ya. N., Yakushevich A. V., “Promezhutochnye podgruppy grupp Shevalle nad polem chastnykh koltsa glavnykh idealov”, Algebra i logika, 39:3 (2000), 347–358

[15] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975

[16] Stepanov A. V., “O raspolozhenii podgrupp, normalizuemykh fiksirovannoi”, Zap. nauch. semin. POMI, 198, 1991, 92–102

[17] Stepanov A. V., “O normalnom stroenii polnoi lineinoi gruppy nad koltsom”, Zap. nauch. semin. POMI, 236, 1997, 166–182

[18] Abe E., “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17

[19] Abe E., Suzuki K., “On normal subgroups of Chevalley groups over commutative rings”, Tohoku Math. J., 28:2 (1976), 185–198

[20] Bak A., K-theory of forms, Ann. of Math. Stud., 98, Princeton Univ. Press, Princeton, N.J., 1981

[21] Bak A., Stepanov A. V., “Subring subgroups of symplectic groups in characteristic $2$”, Algebra i analiz, 28:4 (2016), 47–61

[22] Carter R., Simple groups of lie type, Pure Appl. Math., 28, Wiley Sons, London, 1972

[23] Demazure M., Gabriel P., Introduction to algebraic geometry and algebraic groups, North-Holland Math. Stud., 39, North-Holland Publ. Co., Amsterdam, 1980

[24] Dickson L. E., Linear groups with an exposition of the Galois fields theory, Teubner, Leipzig, 1901

[25] Gorenstein D., Finite groups, Harper Row Publ., New York, 1968

[26] Jantzen J. C., Representations of algebraic groups, Math. Surveys Monogr., 107, 2nd ed., Amer. Math. Soc., Providence, RI, 2003

[27] van der Kallen W., “Another presentation for Steinberg groups”, Nederl. Akad. Wetensch. Proc. Ser. A80 = Indag. Math., 39:4 (1977), 304–312

[28] Lavrenov A., “Another presentation for symplectic Steinberg groups”, J. Pure and Appl. Algebra, 219 (2015), 3755–3780

[29] Lavrenov A., Sinchuk S., “On centrality of even orthogonal $\mathrm{K}_2$”, J. Pure Appl. Algebra, 221:5 (2017), 1134–1145

[30] Moiseenkova T. V., Nuzhin Ya. N., “The Iwasava decomposition and intermediate subgroups of the {S}teinberg groups over the field of fractions of a principal ideal ring”, Sci. China Ser. A, 52:2 (2009), 318–322

[31] Sinchuk S., “On centrality of $\mathrm{K}_2$ for Chevalley groups of type ${E}_l$”, J. Pure Appl. Algebra, 220:2 (2016), 857–875

[32] Smolensky A., “Suzuki–Ree groups and tits mixed groups over rings”, Comm. Algebra, 2019

[33] Stein M. R., “Generators, relations, and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93 (1971), 965–1004

[34] Stepanov A., “Sandwich classification theorem”, Int. J. Group Theory, 4:3 (2015), 7–12

[35] Stepanov A. V., “Nonstandard subgroups between $\mathrm{E}_n(R)$ and $\mathrm{GL}_n(A)$”, Algebra Colloq., 11:3 (2004), 321–334

[36] Stepanov A. V., “Free product subgroups between {C}hevalley groups $\mathrm{G}(\Phi,F)$ and $\mathrm{G}(\Phi,F[t])$”, J. Algebra, 324:7 (2010), 1549–1557

[37] Stepanov A. V., “Subring subgroups in Chevalley groups with doubly laced root systems”, J. Algebra, 362 (2012), 12–29

[38] Suzuki K., “On parabolic subgroups of Chevalley groups over local rings”, Tohoku Math. J., 28:1 (1976), 57–66

[39] Taddei G., “Normalité des groupes {élé}mentaire dans les groupes de Chevalley sur un anneau”, Applications of algebraic K-theory to algebraic geometry and number theory (Boulder, Colo., 1983), v. I, II, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 693–710

[40] Timmesfeld F. G., “Abstract root subgroups and quadratic action”, Adv. Math., 142:1 (1999), 1–150