Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account
Algebra i analiz, Tome 31 (2019) no. 4, pp. 137-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $ L_2(\mathbb{R}^d;\mathbb{C}^n)$, consider a selfadjoint matrix second order elliptic differential operator $ \mathcal {B}_\varepsilon $, $ 0\varepsilon \leq 1$. The principal part of the operator is given in a factorized form, the operator contains first and zero order terms. The operator $ \mathcal {B}_\varepsilon $ is positive definite, its coefficients are periodic and depend on $ \mathbf {x}/\varepsilon $. The behavior in the small period limit is studied for the operator exponential $ e^{-\mathcal {B}_\varepsilon t}$, $ t\geq 0$. The approximation in the $ (L_2\rightarrow L_2)$-operator norm with error estimate of order $ O(\varepsilon ^2)$ is obtained. The corrector is taken into account in this approximation. The results are applied to homogenization of the solutions for the Cauchy problem for parabolic systems.
Keywords: periodic differential operators, parabolic systems, homogenization, operator error estimates.
@article{AA_2019_31_4_a4,
     author = {Yu. M. Meshkova},
     title = {Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account},
     journal = {Algebra i analiz},
     pages = {137--197},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_4_a4/}
}
TY  - JOUR
AU  - Yu. M. Meshkova
TI  - Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account
JO  - Algebra i analiz
PY  - 2019
SP  - 137
EP  - 197
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_4_a4/
LA  - ru
ID  - AA_2019_31_4_a4
ER  - 
%0 Journal Article
%A Yu. M. Meshkova
%T Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account
%J Algebra i analiz
%D 2019
%P 137-197
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_4_a4/
%G ru
%F AA_2019_31_4_a4
Yu. M. Meshkova. Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account. Algebra i analiz, Tome 31 (2019) no. 4, pp. 137-197. http://geodesic.mathdoc.fr/item/AA_2019_31_4_a4/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. Co., Amsterdam–New York, 1978

[3] Birman M., Suslina T., “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107

[4] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108

[5] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90

[6] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104

[7] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130

[8] Vasilevskaya E. S., “Usrednenie parabolicheskoi zadachi Koshi s periodicheskimi koeffitsientami pri uchete korrektora”, Algebra i analiz, 21:1 (2009), 3–60

[9] Geng J., Shen Zh., “Convergence rates in parabolic homogenization with time-dependent periodic coefficients”, J. Funct. Anal., 272:5 (2017), 2092–2113

[10] Griso G., “Error estimate and unfolding for periodic homogenization”, Asymptot. Anal., 40:3/4 (2004), 269–286

[11] Griso G., “Interior error estimate for periodic homogenization”, Anal. Appl., 4:1 (2006), 61–79

[12] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993

[13] Zhikov V. V., “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. RAN, 403:3 (2005), 305–308

[14] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524

[15] Zhikov V. V., Pastukhova S. E., “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237

[16] Zhikov V. V., Pastukhova S. E., “Ob operatornykh otsenkakh v teorii usredneniya”, Uspekhi mat. nauk, 71:3 (2016), 27–122

[17] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[18] Kenig C. E., Lin F., Shen Zh., “Convergence rates in $L^2$ for elliptic homogenization problems”, Arch. Rational Mech. Anal., 203:3 (2012), 1009–1036

[19] Meshkova Yu. M., “Usrednenie zadachi Koshi dlya parabolicheskikh sistem s periodicheskimi koeffitsientami”, Algebra i analiz, 25:6 (2013), 125–177

[20] Meshkova Yu. M., Suslina T. A., “Usrednenie pervoi nachalno-kraevoi zadachi dlya parabolicheskikh sistem: operatornye otsenki pogreshnosti”, Algebra i analiz, 29:6 (2017), 99–158

[21] Moskow Sh., Vogelius M., “First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof”, Proc. Roy. Soc. Edinburgh Sect. A, 127:6 (1997), 1263–1299

[22] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984

[23] Suslina T. A., “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. anal. i ego pril., 38:4 (2004), 86–90

[24] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. (2), 220, Amer. Math. Soc., Providence, RI, 2007, 201–233

[25] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\mathbb{R}^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447

[26] Suslina T. A., “Usrednenie v klasse Soboleva $H^1(\mathbb{R}^d)$ dlya periodicheskikh ellipticheskikh differentsialnykh operatorov vtorogo poryadka pri vklyuchenii chlenov pervogo poryadka”, Algebra i analiz, 22:1 (2010), 108–222

[27] Suslina T. A., “Approksimatsiya rezolventy dvuparametricheskogo kvadratichnogo operatornogo puchka vblizi nizhnego kraya spektra”, Algebra i analiz, 25:5 (2013), 221–251

[28] Suslina T. A., “Homogenization of the Dirichlet problem for elliptic systems: $L_2$-operator error estimates”, Mathematika, 59:2 (2013), 463–476

[29] Suslina T. A., “Usrednenie ellipticheskikh sistem s periodicheskimi koeffitsientami: operatornye otsenki pogreshnosti v $L_2(\mathbb{R}^d)$ s uchetom korrektora”, Algebra i analiz, 26:4 (2014), 195–263

[30] Xu Q., “Convergence rates for general elliptic homogenization problems in Lipschitz domains”, SIAM J. Math. Anal., 48:6 (2016), 3742–3788