Sharp estimates for the gradient of solutions to the heat equation
Algebra i analiz, Tome 31 (2019) no. 3, pp. 136-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Various sharp pointwise estimates for the gradient of solutions to the heat equation are obtained. The Dirichlet and Neumann conditions are prescribed on the boundary of a half-space. All data belong to the Lebesgue space $ L^p$. Derivation of the coefficients is based on solving certain optimization problems with respect to a vector parameter inside of an integral over the unit sphere.
Keywords: heat equation, sharp pointwise estimates for the gradient, first and second boundary value problems.
@article{AA_2019_31_3_a6,
     author = {G. Kresin and V. Maz'ya},
     title = {Sharp estimates for the gradient of solutions to the heat equation},
     journal = {Algebra i analiz},
     pages = {136--153},
     year = {2019},
     volume = {31},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/}
}
TY  - JOUR
AU  - G. Kresin
AU  - V. Maz'ya
TI  - Sharp estimates for the gradient of solutions to the heat equation
JO  - Algebra i analiz
PY  - 2019
SP  - 136
EP  - 153
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/
LA  - en
ID  - AA_2019_31_3_a6
ER  - 
%0 Journal Article
%A G. Kresin
%A V. Maz'ya
%T Sharp estimates for the gradient of solutions to the heat equation
%J Algebra i analiz
%D 2019
%P 136-153
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/
%G en
%F AA_2019_31_3_a6
G. Kresin; V. Maz'ya. Sharp estimates for the gradient of solutions to the heat equation. Algebra i analiz, Tome 31 (2019) no. 3, pp. 136-153. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/

[1] Kresin G., Maz'ya V., Sharp real-part theorems. A unified approach, Lecture Notes in Math., 1903, Springer, Berlin, 2007

[2] Kresin G., Maz'ya V., “Sharp real-part theorems in the upper half-plane and similar estimates for harmonic functions”, Probl. mat. anal., 61 (2011), 123–138

[3] Kresin G., Maz'ya V., Maximum principles and sharp constants for solutions of elliptic and parabolic systems, Math. Surveys Monogr., 183, Amer. Math. Soc., Providence, RI, 2012

[4] Kresin G., Maz'ya V., “Optimal estimates for derivatives of solutions to Laplace, Lamé and Stokes equations”, Probl. mat. anal., 73 (2013), 53–66

[5] Kresin G., “An extremal problem for integrals on a measure space with abstract parameters”, Complex Anal. Oper. Theory, 11:7 (2017), 1477–1490

[6] Kresin G., Maz'ya V., “Generalized Poisson integral and sharp estimates for harmonic and biharmonic functions in the half-space”, Math. Model. Nat. Phenom. (to appear)