Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_3_a6, author = {G. Kresin and V. Maz'ya}, title = {Sharp estimates for the gradient of solutions to the heat equation}, journal = {Algebra i analiz}, pages = {136--153}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/} }
G. Kresin; V. Maz'ya. Sharp estimates for the gradient of solutions to the heat equation. Algebra i analiz, Tome 31 (2019) no. 3, pp. 136-153. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/
[1] Kresin G., Maz'ya V., Sharp real-part theorems. A unified approach, Lecture Notes in Math., 1903, Springer, Berlin, 2007
[2] Kresin G., Maz'ya V., “Sharp real-part theorems in the upper half-plane and similar estimates for harmonic functions”, Probl. mat. anal., 61 (2011), 123–138
[3] Kresin G., Maz'ya V., Maximum principles and sharp constants for solutions of elliptic and parabolic systems, Math. Surveys Monogr., 183, Amer. Math. Soc., Providence, RI, 2012
[4] Kresin G., Maz'ya V., “Optimal estimates for derivatives of solutions to Laplace, Lamé and Stokes equations”, Probl. mat. anal., 73 (2013), 53–66
[5] Kresin G., “An extremal problem for integrals on a measure space with abstract parameters”, Complex Anal. Oper. Theory, 11:7 (2017), 1477–1490
[6] Kresin G., Maz'ya V., “Generalized Poisson integral and sharp estimates for harmonic and biharmonic functions in the half-space”, Math. Model. Nat. Phenom. (to appear)