Sharp estimates for the gradient of solutions to the heat equation
Algebra i analiz, Tome 31 (2019) no. 3, pp. 136-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various sharp pointwise estimates for the gradient of solutions to the heat equation are obtained. The Dirichlet and Neumann conditions are prescribed on the boundary of a half-space. All data belong to the Lebesgue space $ L^p$. Derivation of the coefficients is based on solving certain optimization problems with respect to a vector parameter inside of an integral over the unit sphere.
Keywords: heat equation, sharp pointwise estimates for the gradient, first and second boundary value problems.
@article{AA_2019_31_3_a6,
     author = {G. Kresin and V. Maz'ya},
     title = {Sharp estimates for the gradient of solutions to the heat equation},
     journal = {Algebra i analiz},
     pages = {136--153},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/}
}
TY  - JOUR
AU  - G. Kresin
AU  - V. Maz'ya
TI  - Sharp estimates for the gradient of solutions to the heat equation
JO  - Algebra i analiz
PY  - 2019
SP  - 136
EP  - 153
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/
LA  - en
ID  - AA_2019_31_3_a6
ER  - 
%0 Journal Article
%A G. Kresin
%A V. Maz'ya
%T Sharp estimates for the gradient of solutions to the heat equation
%J Algebra i analiz
%D 2019
%P 136-153
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/
%G en
%F AA_2019_31_3_a6
G. Kresin; V. Maz'ya. Sharp estimates for the gradient of solutions to the heat equation. Algebra i analiz, Tome 31 (2019) no. 3, pp. 136-153. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a6/

[1] Kresin G., Maz'ya V., Sharp real-part theorems. A unified approach, Lecture Notes in Math., 1903, Springer, Berlin, 2007

[2] Kresin G., Maz'ya V., “Sharp real-part theorems in the upper half-plane and similar estimates for harmonic functions”, Probl. mat. anal., 61 (2011), 123–138

[3] Kresin G., Maz'ya V., Maximum principles and sharp constants for solutions of elliptic and parabolic systems, Math. Surveys Monogr., 183, Amer. Math. Soc., Providence, RI, 2012

[4] Kresin G., Maz'ya V., “Optimal estimates for derivatives of solutions to Laplace, Lamé and Stokes equations”, Probl. mat. anal., 73 (2013), 53–66

[5] Kresin G., “An extremal problem for integrals on a measure space with abstract parameters”, Complex Anal. Oper. Theory, 11:7 (2017), 1477–1490

[6] Kresin G., Maz'ya V., “Generalized Poisson integral and sharp estimates for harmonic and biharmonic functions in the half-space”, Math. Model. Nat. Phenom. (to appear)