Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_3_a5, author = {A. Ilyin and A. Laptev}, title = {Lieb-Thirring inequalities on the sphere}, journal = {Algebra i analiz}, pages = {116--135}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a5/} }
A. Ilyin; A. Laptev. Lieb-Thirring inequalities on the sphere. Algebra i analiz, Tome 31 (2019) no. 3, pp. 116-135. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a5/
[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989
[2] Chepyzhov V. V., Ilyin A. A., “A note on the fractal dimension of attractors of dissipative dynamical systems”, Nonlinear Anal., 44:6 (2001), 811–819
[3] Chepyzhov V. V., Ilyin A. A., “On the fractal dimension of invariant sets: applications to Navier–Stokes equations”, Discrete Contin. Dyn. Syst., 10:1–2 (2004), 117–135
[4] Constantin P., Foias C., “Global Lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for the 2D Navier–Stokes equations”, Comm. Pure Appl. Math., 38:1 (1985), 1–27
[5] Dolbeault J., Esteban M. J., Laptev A., “Spectral estimates on the sphere”, Anal. PDE, 7:2 (2014), 435–460
[6] Dolbeault J., Laptev A., Loss M., “Lieb–Thirring inequalities with improved constants”, J. Eur. Math. Soc., 10:4 (2008), 1121–1126
[7] Eden A., Foias C., “A simple proof of the generalized Lieb–Thirring inequalities in one space dimension”, J. Math. Anal. Appl., 162:1 (1991), 250–254
[8] Frank R. L., “Cwikel's theorem and the CLR inequality”, J. Spectr. Theory, 4:1 (2014), 1–21
[9] Frank R. L., Laptev A., Weidl T., Lieb–Thirring inequalities, in preparation
[10] Foias C., Jolly M. S., Yang M., “On single mode forcing of the 2D-NSE”, J. Dynam. Differential Equations, 25:2 (2013), 393–433
[11] Ghidaglia J. M., Marion M., Temam R., “Generalization of the Sobolev–Lieb–Thirring inequalities and applications to the dimension of attractors”, Differential Integral Equations, 1:1 (1988), 1–21
[12] Ilin A. A., “Uravneniya Nave–Stoksa i Eilera na dvumernykh zamknutykh mnogoobraziyakh”, Mat. sb., 181:4 (1990), 521–539
[13] Ilin A. A., “Chastichno dissipativnye polugruppy, porozhdaemye sistemoi Nave-Stoksa na dvumernykh mnogoobraziyakh, i ikh attraktory”, Mat. sb., 184:1 (1993), 55–88
[14] Ilyin A. A., “Lieb–Thirring inequalities on the $N$-sphere and in the plane, and some applications”, Proc. London Math. Soc. (3), 67:1 (1993), 159–182
[15] Ilyin A. A., “Navier–Stokes equations on the rotating sphere. A simple proof of the attractor dimension estimate”, Nonlinearity, 7:1 (1994), 31–39
[16] Ilyin A. A., Miranville A., Titi E. S., “Small viscosity sharp estimates for the global attractor of the 2D damped-driven Navier–Stokes equations”, Commun. Math. Sci., 2:3 (2004), 403–426
[17] Ilin A. A., “O spektre operatora Stoksa”, Funkts. anal. i ego pril., 43:4 (2009), 14–25
[18] Ilyin A. A., “Lieb–Thirring inequalities on some manifolds”, J. Spectr. Theory, 2:1 (2012), 57–78
[19] Ilyin A., Laptev A., Loss M., Zelik S., “One-dimensional interpolation inequalities, Carlson–Landau inequalities and magnetic Schrödinger operators”, Int. Math. Res. Not. IMRN, 2016, no. 4, 1190–1222
[20] Ilin A. A., Laptev A. A., “Neravenstva Liba-Tirringa na tore”, Mat. sb., 207:10 (2016), 56–79
[21] Ilyin A. A., Laptev A. A., “Berezin–Li–Yau inequalities on domains on the sphere”, J. Math. Anal. Appl., 473:2 (2019), 1253–1269
[22] Ladyzhenskaya O. A., “First boundary value problem for Navier–Stokes equations in domain with nonsmooth boundaries”, C. R. Acad. Sci. Paris Ser. I Math., 314:4 (1992), 253–258
[23] Laptev A., “Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces”, J. Funct. Anal., 151:2 (1997), 531–545
[24] Laptev A., Weidl T., “Sharp Lieb–Thirring inequalities in high dimensions”, Acta Math., 184:1 (2000), 87–111
[25] Laptev A., Weidl T., Recent results on Lieb-Thirring inequalities (La Chapelle sur Erdre, 2000), Journées Équations aux Dérivées Partielles, XX, Univ. Nantes, Nantes, 2000
[26] Lieb E. H., “On characteristic exponents in turbulence”, Comm. Math. Phys., 92:4 (1984), 473–480
[27] Lieb E., Thirring W., “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Stud. Math. Phys., Princeton Univ. Press, Princeton, NJ, 1976, 269–303
[28] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shk., M., 1977
[29] Rosa R., “The global attractor for the 2D Navier–Stokes flow on some unbounded domains”, Nonlinear Anal., 32:1 (1998), 71–85
[30] Rumin M., “Spectral density and Sobolev inequalities for pure and mixed states”, Geom. Funct. Anal., 20 (2010), 817–844
[31] Rumin M., “Balanced distribution-energy inequalities and related entropy bounds”, Duke Math. J., 160:3 (2011), 567–597
[32] Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1972
[33] Strichartz R. S., “Estimates for sums of eigenvalues for domains in homogeneous spaces”, J. Func. Anal., 137:1 (1996), 152–190
[34] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997