Atypicality of power-law solutions to Emden-Fowler type higher order equations
Algebra i analiz, Tome 31 (2019) no. 2, pp. 152-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

For higher-order Emden-Fowler type equations, conditions on the roots of a certain polynomial related to the equation are obtained that are sufficient to ensure that asymptotically power-law solutions are atypical. Atypicality means that the set of initial data generating such solutions has measure zero. By using those conditions, atypicality of the asymptotically power-law solutions is proved for the equations of order $ 12$ to $ 203$ with sufficiently strong nonlinearity. A review of results is given for the asymptotically power-law behavior of blow-up solutions.
Keywords: Emden–Fowler equation, blow-up solutions, asymptotically power-law solutions.
@article{AA_2019_31_2_a5,
     author = {I. V. Astashova},
     title = {Atypicality of power-law solutions to {Emden-Fowler} type higher order equations},
     journal = {Algebra i analiz},
     pages = {152--173},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a5/}
}
TY  - JOUR
AU  - I. V. Astashova
TI  - Atypicality of power-law solutions to Emden-Fowler type higher order equations
JO  - Algebra i analiz
PY  - 2019
SP  - 152
EP  - 173
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a5/
LA  - ru
ID  - AA_2019_31_2_a5
ER  - 
%0 Journal Article
%A I. V. Astashova
%T Atypicality of power-law solutions to Emden-Fowler type higher order equations
%J Algebra i analiz
%D 2019
%P 152-173
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_2_a5/
%G ru
%F AA_2019_31_2_a5
I. V. Astashova. Atypicality of power-law solutions to Emden-Fowler type higher order equations. Algebra i analiz, Tome 31 (2019) no. 2, pp. 152-173. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a5/

[1] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | MR

[2] Astashova I. V., “Ob asimptoticheskom povedenii peshenii nekotopykh nelineinykh diffepentsialnykh upavnenii”, Doklady rasshirennykh zasedanii seminara IPM imeni I. N. Vekua, 1, no. 3, 1985, 9–11 | MR

[3] Astashova I. V., “Primenenie dinamicheskikh sistem k issledovaniyu asimptoticheskikh svoistv reshenii nelineinykh differentsialnykh uravnenii vysokikh poryadkov”, Sovrem. mat. i ee pril., 8 (2003), 3–33

[4] Astashova I. V., “Kachestvennye svoistva reshenii kvazilineinykh obyknovennykh differentsialnykh uravnenii”, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, YuNITI-DANA, M., 2012, 22–290

[5] Astashova I. V., “Asimptoticheskoe povedenie peshenii nekotopykh nelineinykh diffepentsialnykh upavnenii”, Uspekhi mat. nauk, 40:5 (1985), 197

[6] Kvinikadze G. G., Kiguradze I. T., “O bystro rastuschikh resheniyakh nelineinykh obyknovennykh differentsialnykh uravnenii”, Soobsch. AN GSSR, 106:3 (1982), 465–468 | MR | Zbl

[7] Kozlov V. A., “On Kneser solutions of higher order nonlinear ordinary differential equations”, Ark. Mat., 37:2 (1999), 305–322 | DOI | MR | Zbl

[8] Kiguradze I. T., “O vzryvnykh knezerovskikh resheniyakh nelineinykh differentsialnykh uravnenii vysshikh poryadkov”, Differ. uravn., 37:6 (2001), 735–743 | MR | Zbl

[9] Astashova I. V., “On power and non-power asymptotic behavior of positive solutions to Emden-Fowler type higher-order equations”, Adv. Difference Equ., 2013 (2013), 220, 15 pp. | DOI | MR | Zbl

[10] Astashova I. V., “O polozhitelnykh resheniyakh s nestepennoi asimptotikoi i kvaziperiodicheskikh resheniyakh uravneniya tipa Emdena–Faulera vysokogo poryadka”, Probl. mat. anal., 79 (2015), 9–23 | Zbl

[11] Astashova I. V., “On quasi-periodic solutions to a higher-order Emden–Fowler type differential equation”, Bound. Value Probl., 2014 (2014), 174, 8 pp. | DOI | MR | Zbl

[12] Astashova I., “On Kiguradze's problem on power-law asymptotic behavior of blow-up solutions to Emden–Fowler type differential equations”, Georgian Math. J., 24:2 (2017), 185–191 | DOI | MR | Zbl

[13] Astashova I., “On qualitative properties and asymptotic behavior of solutions to higher-order nonlinear differential equations”, WSEAS Transac. Math., 16:5 (2017), 39–47 | MR

[14] Astashova I., “On asymptotic behavior of blow-up solutions to higher-order differential equations with general nonlinearity”, Differential and Difference Equations with Applications, Springer Proc. Math. Stat., 230, Springer, Cham, 2018, 1–13 | DOI | MR

[15] Astashova I., Vasilev V., “On nonpower-law behavior of blow-up solutions to Emden-Fowler type higher-order differential equations”, Intern. Workshop QUALITDE-2018 (December 1–3, 2018, Tbilisi, Georgia), 2018, 11–15 | MR

[16] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970