Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point
Algebra i analiz, Tome 31 (2019) no. 2, pp. 88-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem for the $ p(x)$-Laplacian with a continuous boundary function is treated. A sufficient condition is indicated for the regularity of a boundary point, and the modulus of continuity of solutions at this point is estimated.
Keywords: Wiener criterion, boundary regularity, Dirichlet problem, variable exponent, $p(x)$-Laplacian.
@article{AA_2019_31_2_a3,
     author = {Yu. A. Alkhutov and M. D. Surnachev},
     title = {Behavior of solutions of the {Dirichlet} {Problem} for the $ p(x)${-Laplacian} at a boundary point},
     journal = {Algebra i analiz},
     pages = {88--117},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a3/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - M. D. Surnachev
TI  - Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point
JO  - Algebra i analiz
PY  - 2019
SP  - 88
EP  - 117
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a3/
LA  - ru
ID  - AA_2019_31_2_a3
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A M. D. Surnachev
%T Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point
%J Algebra i analiz
%D 2019
%P 88-117
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_2_a3/
%G ru
%F AA_2019_31_2_a3
Yu. A. Alkhutov; M. D. Surnachev. Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point. Algebra i analiz, Tome 31 (2019) no. 2, pp. 88-117. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a3/

[1] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. mat., 47:5 (1983), 961–995 | MR

[2] Zhikov V. V., “Usrednenie nelineinykh funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. mat., 50:4 (1986), 675–711 | MR

[3] Zhikov V. V., “Otsenki tipa Meiersa dlya resheniya nelineinoi sistemy Stoksa”, Differ. uravn., 33:1 (1997), 107–144 | MR

[4] Růžička M., Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Math., Springer, Berlin, 2000 | MR | Zbl

[5] Acerbi E., Mingione G., Seregin G., “Regularity results for parabolic systems related to a class of non-Newtonian fluids”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21:1 (2004), 25–60 | MR | Zbl

[6] Zhikov V. V., “Razreshimost trekhmernoi zadachi o termistore”, Tr. Mat. in-ta RAN, 261, 2008, 101–114 | Zbl

[7] Diening L., Harjulehto P., Hästö P., Růžička M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[8] Zhikov V. V., “On Lavrentiev's Phenomenon”, Russian J. Math. Phys., 3:2 (1994), 249–269 | MR

[9] Zhikov V. V., “O postanovke kraevykh zadach dlya integrantov vida $|\xi|^{\alpha(x)}$”, V Moskovskom matematicheskom obschestve, Uspekhi mat. nauk, 41:4 (1986), 187–188

[10] Zhikov V. V., “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl

[11] Alkhutov Yu. A., Krasheninnikova O. V., “Nepreryvnost v granichnykh tochkakh reshenii kvazilineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Izv. RAN. Ser. mat., 68:6 (2004), 3–60 | DOI | MR | Zbl

[12] Alkhutov Yu. A., Surnachev M. D., “Regulyarnost granichnoi tochki dlya $p(x)$-laplasiana”, Probl. mat. anal., 92 (2018), 5–25 | Zbl

[13] Alkhutov Yu. A., “Neravenstvo Kharnaka i gelderovost reshenii nelineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Differ. uravn., 33:12 (1997), 1651–1660 | MR | Zbl

[14] Perron O., “Eine neue Behandlung der ersten Randwertaufgabe für $\triangle u=0$”, Math. Z., 18 (1923), 42–54 | DOI | MR | Zbl

[15] Wiener N., “Certain notions in potential theory”, J. Math. Phys., 3:1 (1924), 24–51 | DOI

[16] Wiener N., “The Dirichlet problem”, J. Math. Phys., 3:3 (1924), 127–146 | DOI | MR | Zbl

[17] Wiener N., “Note on a paper of O. Perron”, J. Math. Phys., 4:1–4 (1925), 21–32 | DOI | Zbl

[18] Heinonen J., Kilpeläinen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., Clarendon Press, Oxford, 1993 | MR | Zbl

[19] Kondratev V. A., Landis E. M., “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Itogi nauki i tekhniki. Sovr. probl. mat. Fundam. napravleniya, 32, VINITI, M., 1988, 99–215

[20] Lebesgue H. L., “Sur des cas d'impossibilité du problème de Dirichlet”, C. R. Soc. Math. France, 41 (1913)

[21] Littman W., Stampacchia G., Weinberger H. F., “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43–77 | MR | Zbl

[22] Mazya V. G., “O module nepreryvnosti resheniya zadachi Dirikhle vblizi neregulyarnoi granitsy”, Probl. mat. anal., LGU, L., 1966, 45–58

[23] Mazya V. G., “O povedenii vblizi granitsy resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v divergentnoi forme”, Mat. zametki, 2:2 (1967), 209–220

[24] Mazya V. G., “O nepreryvnosti v granichnoi tochke reshenii kvazilineinykh ellipticheskikh uravnenii”, Vestnik Leningr. un-ta. Ser. mat. mekh. astronom., 1970, no. 13, 42–55 | Zbl

[25] Krol I. N., Mazya V. G., “Ob otsutstvii nepreryvnosti i nepreryvnosti po Gelderu reshenii kvazilineinykh ellipticheskikh uravnenii vblizi neregulyarnoi granitsy”, Tr. Mosk. mat. o-va, 26, 1972, 75–94 | Zbl

[26] Gariepy R., Ziemer W. P., “A regularity condition at the boundary for solutions of quasilinear elliptic equations”, Arch. Rational Mech. Anal., 67:1 (1977), 25–39 | DOI | MR | Zbl

[27] Lindqvist P., Martio O., “Two theorems of N. Wiener for solutions of quasilinear elliptic equations”, Acta Math., 155:3–4 (1985), 153–171 | DOI | MR | Zbl

[28] Kilpeläinen T., Malý J., “The Wiener test and potential estimates for quasilinear elliptic equations”, Acta Math., 172 (1994), 137–161 | DOI | MR | Zbl

[29] Sharapudinov I. I., Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012

[30] Trudinger N. S., “On the regularity of generalized solutions of linear, non-unformly elliptic equations”, Arch. Rational Mech. Anal., 42 (1971), 50–62 | DOI | MR | Zbl