Mots-clés : Liouville theorem
@article{AA_2019_31_2_a11,
author = {G. Seregin and W. Wang},
title = {Sufficient conditions on {Liouville} type theorems for the {3D} steady {Navier{\textendash}Stokes} equations},
journal = {Algebra i analiz},
pages = {269--278},
year = {2019},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a11/}
}
G. Seregin; W. Wang. Sufficient conditions on Liouville type theorems for the 3D steady Navier–Stokes equations. Algebra i analiz, Tome 31 (2019) no. 2, pp. 269-278. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a11/
[1] Chae D., “Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations”, Comm. Math. Phys., 326:1 (2014), 37–48 | DOI | MR | Zbl
[2] Chae D., Yoneda T., “On the Liouville theorem for the stationary Navier–Stokes equations in a critical space”, J. Math. Anal. Appl., 405:2 (2013), 706–710 | DOI | MR | Zbl
[3] Chae G., Wolf J., On Liouville type theorems for the steady Navier–Stokes equations in $R^3$, arXiv: 1604.07643 | MR
[4] Chae D., Weng S., “Liouville type theorems for the steady axially symmetric Navier–Stokes and magnetohydrodynamic equations”, Discrete Contin. Dyn. Syst., 36:10 (2016), 5267–5285 | DOI | MR | Zbl
[5] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer Monogr. Math., Second ed., Springer, New York, 2011 | DOI | MR | Zbl
[6] Koch G., Nadirashvili N., Seregin G., Sverak V., “Liouville theorems for the Navier–Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105 | DOI | MR | Zbl
[7] Kozono H., Terasawa Y., Wakasugi Y., “A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions”, J. Funct. Anal., 272 (2017), 804–818 | DOI | MR | Zbl
[8] Seregin G., “Liouville type theorem for stationary Navier–Stokes equations”, Nonlinearity, 29:8 (2016), 2191–2195 | DOI | MR | Zbl
[9] Seregin G., A Liouville type theorem for steady-state Navier–Stokes equations, arXiv: ; J. E. D. P., IX, 2016, 5 pp. 1611.01563
[10] Seregin G., “Remarks on Liouville type theorems for steady-state Navier–Stokes equations”, Algebra i analiz, 30:2 (2018), 238–248, arXiv: 1703.10822v1 | MR